A Hybrid E-nose System based on Metal Oxide Semiconductor Gas Sensors and Compact Colorimetric Sensors

电子鼻 传感器阵列 电位传感器 主成分分析 传感器融合 通用串口总线 材料科学 计算机科学 电位滴定法 化学 人工智能 电极 机器学习 物理化学 程序设计语言 软件
作者
Aung Khant Maw,Pakpum Somboon,Werayut Srituravanich,Arporn Teeramongkonrasmee
标识
DOI:10.1109/i2cacis52118.2021.9495905
摘要

Commercial metal-oxide semiconductor (MOS) gas sensors have been widely used by recent studies as detection units of electronic noses (e-nose) in various applications including disease diagnosis. However, the enoses employing the MOS sensors can only discriminate a limited number of odor groups due to their poor selectivity. Preliminary studies have shown that the selectivity of the MOS sensors can be enhanced by jointly integrating with other sensory units such as QCM or potentiometric sensors, which, however, involves complex interface circuitry and measurement procedures. In contrast, this paper presents a hybrid electronic nose that combines olfactory information from an MOS sensor array together with a compact paperbased colorimetric sensor array which is simpler and easier to utilize. The proposed system employs total 8 MOS sensors, and the compact paper-based colorimetric sensors are fabricated with indicator dyes such as phenol red, methyl red, and methylene blue. Color profiles of the paper-based sensors are captured using a USB-microscope and the alterations of the dyes during the gas exposure are monitored. The improvement of the system performance in classifying six volatile organic compounds (VOC) are investigated by comparing the classification results of the system with and without the colorimetric sensors. The measurement data from both sensor arrays are mapped to the feature space using principal component analysis (PCA) for pattern extraction. It was confirmed that pattern separation among the target VOCs could be improved based on data fusion of these two sensor arrays. This hybrid e-nose system may be useful for improvement of VOC classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失似发布了新的文献求助10
2秒前
bbbbb完成签到,获得积分10
2秒前
科研通AI2S应助自然的如南采纳,获得50
4秒前
cbx完成签到,获得积分10
5秒前
9秒前
10秒前
今后应助小海绵采纳,获得30
12秒前
13秒前
ryggs完成签到 ,获得积分10
13秒前
狂野傲南发布了新的文献求助10
15秒前
16秒前
16秒前
淳于安筠发布了新的文献求助10
17秒前
圣晟胜完成签到,获得积分10
18秒前
张莹完成签到 ,获得积分10
20秒前
a_1发布了新的文献求助10
20秒前
aaaa发布了新的文献求助10
21秒前
21秒前
22秒前
orixero应助淳于安筠采纳,获得10
24秒前
24秒前
坚强幼晴发布了新的文献求助10
25秒前
狂野傲南完成签到,获得积分10
25秒前
aaaa完成签到,获得积分10
25秒前
深情安青应助lixiunan采纳,获得10
26秒前
26秒前
lihn应助小红花采纳,获得10
27秒前
28秒前
疯狂的水香完成签到,获得积分10
31秒前
零矩阵发布了新的文献求助10
31秒前
32秒前
a_1完成签到,获得积分10
33秒前
33秒前
彬子发布了新的文献求助10
34秒前
35秒前
脑洞疼应助志微采纳,获得10
36秒前
懒羊羊发布了新的文献求助10
37秒前
热情的人杰完成签到,获得积分10
37秒前
lixiunan发布了新的文献求助10
39秒前
鲤鱼发布了新的文献求助60
40秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421494
求助须知:如何正确求助?哪些是违规求助? 3022225
关于积分的说明 8899644
捐赠科研通 2709464
什么是DOI,文献DOI怎么找? 1485778
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681980