Learning-based encoder algorithms for VVC in the context of the optimized VVenC implementation

计算机科学 编码器 背景(考古学) 算法 人工智能 操作系统 生物 古生物学
作者
Gerhard Tech,Valeri George,Jonathan Pfaff,Adam Wieckowski,Benjamin Bross,Heiko Schwarz,Detlev Marpe,Thomas Wiegand
标识
DOI:10.1117/12.2597228
摘要

Versatile Video Coding (VVC) is the most recent and efficient video-compression standard of ITU-T and ISO/IEC. It follows the principle of a hybrid, block-based video codec and offers a high flexibility to select a coded representation of a video. While encoders can exploit this flexibility for compression efficiency, designing algorithms for fast encoding becomes a challenging problem. This problem has recently been attacked with data-driven methods that train suitable neural networks to steer the encoder decisions. On the other hand, an optimized and fast VVC software implementation is provided by Fraunhofer's Versatile Video Encoder VVenC. The goal of this paper is to investigate whether these two approaches can be combined. To this end, we exemplarily incorporate a recent CNN-based approach that showed its efficiency for intra-picture coding in the VVC reference software VTM to VVenC. The CNN estimates parameters that restrict the multi-type tree (MTT) partitioning modes that are tested in rate-distortion optimization. To train the CNN, the approach considers the Lagrangian rate-distortion-time cost caused by the parameters. For performance evaluation, we compare the five operational points reachable with the VVenC presets to operational points that we reach by using the CNN jointly with the presets. Results show that the combination of both approaches is efficient and that there is room for further improvements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的波比应助abcd_1067采纳,获得10
3秒前
10秒前
13秒前
Hermit发布了新的文献求助10
14秒前
14秒前
微笑的又槐完成签到 ,获得积分10
15秒前
淡然冬灵发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
ding应助ghhu采纳,获得10
20秒前
秦罗敷发布了新的文献求助30
20秒前
21秒前
科研通AI6应助动听雨梅采纳,获得30
22秒前
淡然冬灵完成签到,获得积分10
23秒前
开心发布了新的文献求助10
23秒前
liangdayi357发布了新的文献求助10
23秒前
Akim应助知性的采珊采纳,获得10
24秒前
阳光血茗完成签到,获得积分10
26秒前
dmeng发布了新的文献求助10
31秒前
李健应助安详的听白采纳,获得10
31秒前
小二郎应助SCI采纳,获得10
32秒前
liangdayi357完成签到,获得积分20
41秒前
曾经青柏完成签到,获得积分10
43秒前
44秒前
dmeng完成签到,获得积分10
44秒前
Xjx6519发布了新的文献求助20
46秒前
shhoing应助科研通管家采纳,获得10
49秒前
脑洞疼应助科研通管家采纳,获得10
49秒前
延胡索应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
搜集达人应助科研通管家采纳,获得10
49秒前
李爱国应助科研通管家采纳,获得10
49秒前
Mic应助科研通管家采纳,获得30
49秒前
SciGPT应助科研通管家采纳,获得10
49秒前
49秒前
上官若男应助科研通管家采纳,获得10
49秒前
彭于晏应助科研通管家采纳,获得10
49秒前
丘比特应助科研通管家采纳,获得10
49秒前
领导范儿应助科研通管家采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538