亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI

医学 侧隐窝 矢状面 放射科 金标准(测试) 磁共振成像 神经放射学家 腰椎 核医学
作者
James Thomas Patrick Decourcy Hallinan,Lei Zhu,Kaiyuan Yang,Andrew Makmur,Diyaa Abdul Rauf Algazwi,Yee Liang Thian,Samuel Lau,Yun Song Choo,Sterling Ellis Eide,Qai Ven Yap,Yiong Huak Chan,Jiong Hao Tan,Naresh Kumar,Beng Chin Ooi,Hiroshi Yoshioka,Swee Tian Quek
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (1): 130-138 被引量:116
标识
DOI:10.1148/radiol.2021204289
摘要

Background Assessment of lumbar spinal stenosis at MRI is repetitive and time consuming. Deep learning (DL) could improve ­productivity and the consistency of reporting. Purpose To develop a DL model for automated detection and classification of lumbar central canal, lateral recess, and neural ­foraminal stenosis. Materials and Methods In this retrospective study, lumbar spine MRI scans obtained from September 2015 to September 2018 were included. Studies of patients with spinal instrumentation or studies with suboptimal image quality, as well as postgadolinium studies and studies of patients with scoliosis, were excluded. Axial T2-weighted and sagittal T1-weighted images were used. Studies were split into an internal training set (80%), validation set (9%), and test set (11%). Training data were labeled by four radiologists using predefined gradings (normal, mild, moderate, and severe). A two-component DL model was developed. First, a convolutional neural network (CNN) was trained to detect the region of interest (ROI), with a second CNN for classification. An internal test set was labeled by a musculoskeletal radiologist with 31 years of experience (reference standard) and two subspecialist radiologists (radiologist 1: A.M., 5 years of experience; radiologist 2: J.T.P.D.H., 9 years of experience). DL model performance on an external test set was evaluated. Detection recall (in percentage), interrater agreement (Gwet κ), sensitivity, and specificity were calculated. Results Overall, 446 MRI lumbar spine studies were analyzed (446 patients; mean age ± standard deviation, 52 years ± 19; 240 women), with 396 patients in the training (80%) and validation (9%) sets and 50 (11%) in the internal test set. For internal testing, DL model and radiologist central canal recall were greater than 99%, with reduced neural foramina recall for the DL model (84.5%) and radiologist 1 (83.9%) compared with radiologist 2 (97.1%) (P < .001). For internal testing, dichotomous classification (normal or mild vs moderate or severe) showed almost-perfect agreement for both radiologists and the DL model, with respective κ values of 0.98, 0.98, and 0.96 for the central canal; 0.92, 0.95, and 0.92 for lateral recesses; and 0.94, 0.95, and 0.89 for neural foramina (P < .001). External testing with 100 MRI scans of lumbar spines showed almost perfect agreement for the DL model for dichotomous classification of all ROIs (κ, 0.95–0.96; P < .001). Conclusion A deep learning model showed comparable agreement with subspecialist radiologists for detection and classification of central canal and lateral recess stenosis, with slightly lower agreement for neural foraminal stenosis at lumbar spine MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Hayashi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
jacs111发布了新的文献求助10
12秒前
Zjc0913完成签到 ,获得积分10
14秒前
libob完成签到,获得积分10
16秒前
Aaaaa发布了新的文献求助10
19秒前
jacs111完成签到,获得积分10
21秒前
xmqaq完成签到,获得积分10
21秒前
Orange应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
Aaaaa完成签到,获得积分20
32秒前
林利芳完成签到 ,获得积分0
34秒前
38秒前
流萤发布了新的文献求助30
41秒前
hwen1998完成签到 ,获得积分10
41秒前
鱼羊明完成签到 ,获得积分10
42秒前
tufei完成签到,获得积分10
45秒前
暮冬完成签到 ,获得积分10
50秒前
流萤完成签到,获得积分10
54秒前
瑞瑞刘完成签到 ,获得积分10
1分钟前
土豪的摩托完成签到 ,获得积分10
1分钟前
z610938841完成签到,获得积分10
1分钟前
雨yu完成签到 ,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
1分钟前
脑洞疼应助邓邓采纳,获得10
1分钟前
2分钟前
笨蛋美女完成签到 ,获得积分10
2分钟前
2分钟前
Jason发布了新的文献求助10
2分钟前
邓邓发布了新的文献求助10
2分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助霸气的金鱼采纳,获得10
2分钟前
Owen应助霸气的金鱼采纳,获得10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214