Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI

医学 侧隐窝 矢状面 放射科 金标准(测试) 磁共振成像 神经放射学家 腰椎 核医学
作者
James Thomas Patrick Decourcy Hallinan,Lei Zhu,Kaiyuan Yang,Andrew Makmur,Diyaa Abdul Rauf Algazwi,Yee Liang Thian,Samuel Lau,Yun Song Choo,Sterling Ellis Eide,Qai Ven Yap,Yiong Huak Chan,Jiong Hao Tan,Naresh Kumar,Beng Chin Ooi,Hiroshi Yoshioka,Swee Tian Quek
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (1): 130-138 被引量:101
标识
DOI:10.1148/radiol.2021204289
摘要

Background Assessment of lumbar spinal stenosis at MRI is repetitive and time consuming. Deep learning (DL) could improve ­productivity and the consistency of reporting. Purpose To develop a DL model for automated detection and classification of lumbar central canal, lateral recess, and neural ­foraminal stenosis. Materials and Methods In this retrospective study, lumbar spine MRI scans obtained from September 2015 to September 2018 were included. Studies of patients with spinal instrumentation or studies with suboptimal image quality, as well as postgadolinium studies and studies of patients with scoliosis, were excluded. Axial T2-weighted and sagittal T1-weighted images were used. Studies were split into an internal training set (80%), validation set (9%), and test set (11%). Training data were labeled by four radiologists using predefined gradings (normal, mild, moderate, and severe). A two-component DL model was developed. First, a convolutional neural network (CNN) was trained to detect the region of interest (ROI), with a second CNN for classification. An internal test set was labeled by a musculoskeletal radiologist with 31 years of experience (reference standard) and two subspecialist radiologists (radiologist 1: A.M., 5 years of experience; radiologist 2: J.T.P.D.H., 9 years of experience). DL model performance on an external test set was evaluated. Detection recall (in percentage), interrater agreement (Gwet κ), sensitivity, and specificity were calculated. Results Overall, 446 MRI lumbar spine studies were analyzed (446 patients; mean age ± standard deviation, 52 years ± 19; 240 women), with 396 patients in the training (80%) and validation (9%) sets and 50 (11%) in the internal test set. For internal testing, DL model and radiologist central canal recall were greater than 99%, with reduced neural foramina recall for the DL model (84.5%) and radiologist 1 (83.9%) compared with radiologist 2 (97.1%) (P < .001). For internal testing, dichotomous classification (normal or mild vs moderate or severe) showed almost-perfect agreement for both radiologists and the DL model, with respective κ values of 0.98, 0.98, and 0.96 for the central canal; 0.92, 0.95, and 0.92 for lateral recesses; and 0.94, 0.95, and 0.89 for neural foramina (P < .001). External testing with 100 MRI scans of lumbar spines showed almost perfect agreement for the DL model for dichotomous classification of all ROIs (κ, 0.95–0.96; P < .001). Conclusion A deep learning model showed comparable agreement with subspecialist radiologists for detection and classification of central canal and lateral recess stenosis, with slightly lower agreement for neural foraminal stenosis at lumbar spine MRI. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Hayashi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎发布了新的文献求助10
刚刚
smz完成签到 ,获得积分10
刚刚
huiyuan完成签到,获得积分10
刚刚
cjk应助_ban采纳,获得10
1秒前
zhaochenyu发布了新的文献求助10
2秒前
十二完成签到,获得积分10
2秒前
dablack发布了新的文献求助10
3秒前
3秒前
科目三应助水煮南瓜头采纳,获得10
3秒前
4秒前
4秒前
carbonhan完成签到,获得积分10
5秒前
5秒前
细心怜寒完成签到,获得积分10
5秒前
10秒前
细心怜寒发布了新的文献求助10
10秒前
11秒前
Aero完成签到,获得积分20
11秒前
orixero应助ryggs采纳,获得10
13秒前
13秒前
keyanzhang完成签到 ,获得积分10
13秒前
15秒前
16秒前
zwj发布了新的文献求助10
18秒前
Reeee完成签到 ,获得积分10
18秒前
华仔应助细心怜寒采纳,获得10
21秒前
21秒前
小杨完成签到 ,获得积分10
22秒前
嘎嘎完成签到,获得积分10
26秒前
体贴的洋葱完成签到 ,获得积分10
28秒前
29秒前
隐形静芙完成签到 ,获得积分10
29秒前
舒适店员发布了新的文献求助10
30秒前
桐桐完成签到,获得积分0
31秒前
开朗的觅柔完成签到,获得积分10
32秒前
123456发布了新的文献求助10
32秒前
星空完成签到,获得积分10
33秒前
33秒前
35秒前
桥豆麻袋完成签到,获得积分10
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339768
求助须知:如何正确求助?哪些是违规求助? 2967834
关于积分的说明 8631141
捐赠科研通 2647309
什么是DOI,文献DOI怎么找? 1449590
科研通“疑难数据库(出版商)”最低求助积分说明 671464
邀请新用户注册赠送积分活动 660434