From motor control to team play in simulated humanoid football

足球 计算机科学 具身认知 背景(考古学) 强化学习 仿人机器人 控制(管理) 人机交互 运动捕捉 运动技能 电动机控制 人工智能 运动(物理) 机器人 心理学 古生物学 精神科 神经科学 政治学 法学 生物
作者
Siqi Liu,Guy Lever,Zhe Wang,Josh Merel,S. M. Ali Eslami,Daniel Hennes,Wojciech Marian Czarnecki,Yuval Tassa,Shayegan Omidshafiei,Abbas Abdolmaleki,Noah Siegel,Leonard Hasenclever,Luke Marris,Saran Tunyasuvunakool,Hai-Jing Song,Markus Wulfmeier,Paul Müller,Tuomas Haarnoja,Brendan Tracey,Karl Tuyls,Thore Graepel,Nicolas Heess
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:7 (69) 被引量:33
标识
DOI:10.1126/scirobotics.abo0235
摘要

Learning to combine control at the level of joint torques with longer-term goal-directed behavior is a long-standing challenge for physically embodied artificial agents. Intelligent behavior in the physical world unfolds across multiple spatial and temporal scales: Although movements are ultimately executed at the level of instantaneous muscle tensions or joint torques, they must be selected to serve goals that are defined on much longer time scales and that often involve complex interactions with the environment and other agents. Recent research has demonstrated the potential of learning-based approaches applied to the respective problems of complex movement, long-term planning, and multiagent coordination. However, their integration traditionally required the design and optimization of independent subsystems and remains challenging. In this work, we tackled the integration of motor control and long-horizon decision-making in the context of simulated humanoid football, which requires agile motor control and multiagent coordination. We optimized teams of agents to play simulated football via reinforcement learning, constraining the solution space to that of plausible movements learned using human motion capture data. They were trained to maximize several environment rewards and to imitate pretrained football-specific skills if doing so led to improved performance. The result is a team of coordinated humanoid football players that exhibit complex behavior at different scales, quantified by a range of analysis and statistics, including those used in real-world sport analytics. Our work constitutes a complete demonstration of learned integrated decision-making at multiple scales in a multiagent setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助zhangling采纳,获得10
刚刚
飞飞飞枫完成签到,获得积分10
1秒前
Kk发布了新的文献求助10
2秒前
LN完成签到,获得积分10
3秒前
共享精神应助俞跃采纳,获得10
3秒前
3秒前
妥妥酱发布了新的文献求助10
3秒前
酷炫翠桃应助开心绿柳采纳,获得10
5秒前
yuzhanli发布了新的文献求助10
7秒前
8秒前
8秒前
爱生活的科研小白完成签到,获得积分10
9秒前
10秒前
10秒前
梓泽丘墟应助lunar采纳,获得10
11秒前
小二郎应助源源源源采纳,获得10
11秒前
lmd完成签到,获得积分10
12秒前
wuuToiiin完成签到,获得积分10
12秒前
13秒前
Yi发布了新的文献求助10
13秒前
指环王完成签到,获得积分10
13秒前
Lzy的羊发布了新的文献求助10
13秒前
zhangling发布了新的文献求助10
13秒前
14秒前
15秒前
194711完成签到,获得积分10
15秒前
wenfeng完成签到 ,获得积分10
16秒前
oceanao应助终有时采纳,获得10
16秒前
哦豁应助开心绿柳采纳,获得10
17秒前
93完成签到,获得积分10
17秒前
领导范儿应助Yi采纳,获得30
17秒前
hswhswqkdh应助朝气采纳,获得10
17秒前
莹仔完成签到,获得积分10
17秒前
17秒前
18秒前
小蓝完成签到,获得积分10
18秒前
HHHao完成签到,获得积分10
19秒前
深情安青应助梦中冰采纳,获得10
19秒前
踏实的便当完成签到,获得积分10
19秒前
lc完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053