Collaborating Ray Tracing and AI Model for AUV-Assisted 3-D Underwater Sound-Speed Inversion

计算机科学 水下 稳健性(进化) 声速 人工神经网络 反演(地质) 声学 非线性系统 人工智能 水声学 地质学 古生物学 生物化学 海洋学 化学 物理 构造盆地 量子力学 基因
作者
Wei Huang,Mingliu Liu,Deshi Li,Feng Yin,Haole Chen,Jixuan Zhou,Huihui Xu
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:46 (4): 1372-1390 被引量:22
标识
DOI:10.1109/joe.2021.3066780
摘要

Three-dimensional sound-speed distribution is essential for large-scale underwater acoustic applications due to its influence on the signal propagation trajectory. However, it is labor, energy, and time consuming to measure sound speed by traditional methods because of the weak system maneuverability. In this article, an autonomous-underwater-vehicle-assisted underwater sound-speed inversion framework that collaborates ray tracing and artificial intelligence model is proposed to quickly obtain 3-D sound-speed distribution through multicoordinate inversions. An autoencoding-translation neural network is proposed to establish the nonlinear relationship from signal propagation time to the sound-speed profile (SSP), and the inversion time can be shortened with once forward propagation through the model. Robustness could be improved by inverting error-resistant implicit features into the SSP through the proposed translating neural network, whereas the implicit features are extracted from the autoencoder by denoising reconstruction of the input time information. To solve the overfitting problem and extend the training data set, virtual SSPs based on sparse feature points of real SSPs are generated. Simulation results show that our approach can provide a reliable and instantaneous monitoring of 3-D sound-speed distribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
工作简历发布了新的文献求助10
1秒前
Ava应助郑袁如采纳,获得10
1秒前
一一完成签到,获得积分10
1秒前
可爱的函函应助知秋采纳,获得10
2秒前
科目三应助知秋采纳,获得10
2秒前
背后的雪卉应助知秋采纳,获得10
3秒前
NexusExplorer应助知秋采纳,获得10
3秒前
3秒前
乐乐应助菌根采纳,获得10
3秒前
3秒前
3秒前
搜集达人应助干净秋尽采纳,获得10
4秒前
hbb发布了新的文献求助10
5秒前
JamesPei应助韭菜采纳,获得10
5秒前
NexusExplorer应助懒羊羊采纳,获得10
5秒前
5秒前
6秒前
大个应助zzzzz采纳,获得10
7秒前
7秒前
从笙发布了新的文献求助10
7秒前
破风完成签到,获得积分10
7秒前
8秒前
安详的自中完成签到,获得积分10
9秒前
小二郎应助月上柳梢头采纳,获得10
9秒前
9秒前
doctor99完成签到,获得积分10
9秒前
福福气完成签到,获得积分10
9秒前
Mark_He发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
13秒前
刘子田发布了新的文献求助10
13秒前
释然zc发布了新的文献求助10
15秒前
16秒前
传奇3应助半瓶子不满采纳,获得10
16秒前
刘汐完成签到,获得积分10
16秒前
工作简历完成签到,获得积分10
16秒前
木子发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454