材料科学
表面改性
光致发光
堆积
石墨烯
量子点
猝灭(荧光)
乙二醇
纳米技术
荧光
光化学
化学工程
光电子学
有机化学
光学
化学
物理
工程类
作者
Minsu Park,Yangho Jeong,Hyung Suk Kim,Woochan Lee,Sang‐Hyeon Nam,Sukki Lee,Hyewon Yoon,Jin Kim,Seunghyup Yoo,Seokwoo Jeon
标识
DOI:10.1002/adfm.202102741
摘要
Abstract Graphene quantum dots (GQDs) have attracted great attention as next‐generation luminescent nanomaterials due to the advantages of a low‐cost process, low toxicity, and unique photoluminescence (PL). However, in the solid‐state, the strong π−π stacking interactions between the basal planes of GQDs lead to aggregation‐caused PL quenching (ACQ), which impedes practical application to light‐emitting devices. Here, surface functionalized GQDs (F‐GQDs) by polyhedral oligomeric silsesquioxane (POSS), poly(ethylene glycol) (PEG), and hexadecylamine (HDA) to reduce π−π stacking‐induced ACQ is presented. The POSS‐, PEG‐, and HDA‐functionalized GQDs show a significant enhancement in PL intensity compared to bare GQDs by 9.5‐, 9.0‐, and 5.6‐fold in spin‐coated film form and by 8.3‐, 7.2‐, and 3.4‐fold in drop‐casted film form, respectively. Experimental results and molecular dynamics simulations indicate that steric hindrance of the functionalization agent contributes to reducing the π−π stacking between adjacent GQDs and thereby enabling quenching‐resistant PL in the solid‐state. Moreover, the GQD‐based white light‐emitting diodes fabricated by mounting HDA‐GQDs on a UV‐LED chip exhibits efficient down‐conversion for white light emission with a high color rendering index of 86.2 and a correlated‐color temperature of 5612 K at Commission Internationale de l'Éclairage coordinates of (0.333, 0.359).
科研通智能强力驱动
Strongly Powered by AbleSci AI