物理
拓扑(电路)
材料科学
纳米技术
数学
组合数学
作者
Changhua Bao,Peizhe Tang,Dong Sun,Shuyun Zhou
标识
DOI:10.1038/s42254-021-00388-1
摘要
Light–matter interaction in 2D and topological materials provides a fascinating control knob for inducing emergent, non-equilibrium properties and achieving new functionalities in the ultrafast timescale (from femtosecond to picosecond). Over the past decade, intriguing light-induced phenomena, such as Bloch–Floquet states and photo-induced phase transitions, have been reported experimentally, but many still await experimental realization. In this Review, we discuss recent progress on the light-induced phenomena, in which the light field could act as a time-periodic field to drive Floquet states, induce structural and topological phase transitions in quantum materials, couple with spin and various pseudospins, and induce nonlinear optical responses that are affected by the geometric phase. Perspectives on the opportunities of proposed light-induced phenomena, as well as open experimental challenges, are also discussed. Light–matter interaction in 2D and topological materials provides a fascinating control knob for inducing emergent, non-equilibrium properties and achieving new functionalities in the ultrafast timescale. This Review discusses recent experimental progress on the light-induced phenomena and provides perspectives on the opportunities of proposed light-induced phenomena, as well as open experimental challenges.
科研通智能强力驱动
Strongly Powered by AbleSci AI