化学
吸光度
荧光
水溶液
水解
对苯二酚
检出限
基质(水族馆)
纳米颗粒
色谱法
比色法
选择性
组合化学
催化作用
纳米技术
生物化学
有机化学
物理
地质学
海洋学
量子力学
材料科学
作者
Stanislas Nsanzamahoro,Weifeng Wang,Ying Zhang,Chengbo Wang,Yan‐Ping Shi,Jun‐Li Yang
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2021-11-11
卷期号:93 (46): 15412-15419
被引量:24
标识
DOI:10.1021/acs.analchem.1c03210
摘要
Designing analytical approaches for enzymatic activity monitoring with high sensitivity and selectivity is of critical value for the diagnosis of diseases and biomedical studies. In this study, we have created a facile one-step synthetic route to prepare orange-red color and yellow fluorescent silicon-containing nanoparticles (Si CNPs) by mixing 3(2-aminoethylamino) propyl (dimethoxymethylsilane) and hydroquinone (HQ) in an aqueous solution. Inspired by the HQ-regulated facile synthetic step and the generation of HQ from α-glucosidase (α-Glu)-catalyzed hydrolysis of 4-hydroxyphenyl-α-d-glucopyranosyl (4-HPαDG), we have designed a straightforward colorimetric and fluorometric α-Glu activity assay using a commercially available 4-HPαDG as the α-Glu substrate. Fluorescent and colorimetric assays for α-Glu activity measurement have been thereby established and exhibited detection limits as low as 0.0032 and 0.0046 U/mL, respectively. Under single excitation at 370 nm, the prepared Si CNPs emitted yellow fluorescence at 520 nm and exhibited an absorbance peak at 390 nm. In addition, the proposed approach reveals various advantages including easy operation, time-saving, and good anti-interference ability. Hence, it could improve the progress of fluorometric and colorimetric enzymatic activity assays with high sensitivity and simplicity. Moreover, the proposed approach was applied for α-Glu inhibitor screening, and its feasibility in real samples was measured by detecting the α-Glu activity in human serum samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI