A privacy-preserving multi-agent updating framework for self-adaptive tree model

计算机科学 上传 适应(眼睛) 树(集合论) 差别隐私 可解释性 数据挖掘 机器学习 人工智能
作者
Qingyang Li,Bin Guo,Zhu Wang
出处
期刊:Peer-to-peer Networking and Applications [Springer Nature]
标识
DOI:10.1007/s12083-021-01256-6
摘要

The tree-based model is widely applied in classification and regression problems because of its interpretability. Self-adaptive forest models are proposed for adapting to dynamic environments by using active learning and online learning techniques. However, most existing self-adaptive forest models are designed under a single-agent situation. With the development of the IoT, data is distributed across multiple edge devices without geographic restrictions. A global model is trained by distributed data across multiple devices. Therefore, extending a single-agent self-adaptive forest model to a multi-agent one is useful to make the original tree-based models glow with new vitality. In a multi-agent system, the privacy-preserving problem should be addressed when sharing knowledge between agents. In this paper, we propose PMSF, a privacy-preserving multi-agent self-adaptive forest framework via federated learning. We utilize differential privacy to prevent attackers from getting the data statistics. No private data is uploaded into the server in our framework and only updated parameters are uploaded. Finally, We design local adaptation and global update procedures to ensure the ability of self-adaptation of the forest model and the ability of privacy protection in each agent, which can further improve the performance of self-adaptive forest models. To demonstrate the superiority and effectiveness of our framework, we conduct extensive experiments in an identity authentication case with two datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1900发布了新的文献求助10
1秒前
3秒前
田様应助灵巧荆采纳,获得10
3秒前
爱听歌树叶完成签到,获得积分20
3秒前
4秒前
活泼酸奶完成签到,获得积分10
5秒前
6秒前
正直冰露完成签到,获得积分10
6秒前
6秒前
灵巧白安发布了新的文献求助10
6秒前
充电宝应助666采纳,获得10
8秒前
欢呼的时光完成签到 ,获得积分10
9秒前
9秒前
jizhigewu完成签到,获得积分10
9秒前
10秒前
10秒前
科目三应助可爱因子采纳,获得10
11秒前
11秒前
贺可乐发布了新的文献求助30
12秒前
可爱的函函应助文献嘤采纳,获得10
13秒前
好宝宝发布了新的文献求助100
14秒前
14秒前
15秒前
17秒前
flsqw发布了新的文献求助20
18秒前
鲤鱼不二完成签到,获得积分10
19秒前
朴实天寿应助紧张的如南采纳,获得20
20秒前
酷酷绮彤完成签到 ,获得积分10
21秒前
领导范儿应助HeNeArKrXeRn采纳,获得10
23秒前
yhhhhh发布了新的文献求助10
24秒前
24秒前
远山完成签到,获得积分10
26秒前
27秒前
爆米花应助科研通管家采纳,获得10
28秒前
Akim应助科研通管家采纳,获得10
28秒前
852应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
kento应助科研通管家采纳,获得150
28秒前
slycmd完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760