A privacy-preserving multi-agent updating framework for self-adaptive tree model

计算机科学 上传 适应(眼睛) 树(集合论) 差别隐私 可解释性 数据挖掘 机器学习 人工智能
作者
Qingyang Li,Bin Guo,Zhu Wang
出处
期刊:Peer-to-peer Networking and Applications [Springer Nature]
标识
DOI:10.1007/s12083-021-01256-6
摘要

The tree-based model is widely applied in classification and regression problems because of its interpretability. Self-adaptive forest models are proposed for adapting to dynamic environments by using active learning and online learning techniques. However, most existing self-adaptive forest models are designed under a single-agent situation. With the development of the IoT, data is distributed across multiple edge devices without geographic restrictions. A global model is trained by distributed data across multiple devices. Therefore, extending a single-agent self-adaptive forest model to a multi-agent one is useful to make the original tree-based models glow with new vitality. In a multi-agent system, the privacy-preserving problem should be addressed when sharing knowledge between agents. In this paper, we propose PMSF, a privacy-preserving multi-agent self-adaptive forest framework via federated learning. We utilize differential privacy to prevent attackers from getting the data statistics. No private data is uploaded into the server in our framework and only updated parameters are uploaded. Finally, We design local adaptation and global update procedures to ensure the ability of self-adaptation of the forest model and the ability of privacy protection in each agent, which can further improve the performance of self-adaptive forest models. To demonstrate the superiority and effectiveness of our framework, we conduct extensive experiments in an identity authentication case with two datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fafafa完成签到,获得积分10
刚刚
刚刚
何罐吾言完成签到,获得积分10
刚刚
萧七七完成签到,获得积分10
刚刚
刚刚
在水一方应助AteeqBaloch采纳,获得10
2秒前
橘栀发布了新的文献求助10
2秒前
3秒前
wqn完成签到 ,获得积分10
3秒前
研友_LJpJaZ发布了新的文献求助10
3秒前
MANGMANG完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
完美世界应助郜郜嗳采纳,获得10
4秒前
Dr_guo发布了新的文献求助10
5秒前
xuhaoo0125完成签到,获得积分10
6秒前
8秒前
轻松灵薇发布了新的文献求助10
8秒前
爱吃辣条的彪哥完成签到,获得积分10
8秒前
MANGMANG发布了新的文献求助10
8秒前
8秒前
kk完成签到 ,获得积分10
8秒前
Hanson完成签到,获得积分10
9秒前
茜你亦首歌完成签到,获得积分10
10秒前
11秒前
schnappi应助明水采纳,获得50
11秒前
wenhao完成签到,获得积分10
12秒前
12秒前
junyue完成签到,获得积分10
12秒前
毛毛完成签到,获得积分10
12秒前
13秒前
醉熏的涫发布了新的文献求助10
14秒前
14秒前
寒冷的帆布鞋完成签到,获得积分10
15秒前
junyue发布了新的文献求助10
16秒前
思源应助xd采纳,获得10
16秒前
Upupupiu发布了新的文献求助10
17秒前
zhu发布了新的文献求助30
17秒前
kento完成签到,获得积分0
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794