A privacy-preserving multi-agent updating framework for self-adaptive tree model

计算机科学 上传 适应(眼睛) 树(集合论) 差别隐私 可解释性 数据挖掘 机器学习 人工智能
作者
Qingyang Li,Bin Guo,Zhu Wang
出处
期刊:Peer-to-peer Networking and Applications [Springer Nature]
标识
DOI:10.1007/s12083-021-01256-6
摘要

The tree-based model is widely applied in classification and regression problems because of its interpretability. Self-adaptive forest models are proposed for adapting to dynamic environments by using active learning and online learning techniques. However, most existing self-adaptive forest models are designed under a single-agent situation. With the development of the IoT, data is distributed across multiple edge devices without geographic restrictions. A global model is trained by distributed data across multiple devices. Therefore, extending a single-agent self-adaptive forest model to a multi-agent one is useful to make the original tree-based models glow with new vitality. In a multi-agent system, the privacy-preserving problem should be addressed when sharing knowledge between agents. In this paper, we propose PMSF, a privacy-preserving multi-agent self-adaptive forest framework via federated learning. We utilize differential privacy to prevent attackers from getting the data statistics. No private data is uploaded into the server in our framework and only updated parameters are uploaded. Finally, We design local adaptation and global update procedures to ensure the ability of self-adaptation of the forest model and the ability of privacy protection in each agent, which can further improve the performance of self-adaptive forest models. To demonstrate the superiority and effectiveness of our framework, we conduct extensive experiments in an identity authentication case with two datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助hd采纳,获得10
1秒前
赘婿应助丢丢银采纳,获得10
1秒前
1秒前
科研人才完成签到 ,获得积分10
3秒前
风清扬应助可爱的老司机采纳,获得30
4秒前
清新的苑博完成签到,获得积分10
4秒前
CYQ发布了新的文献求助10
4秒前
慕青应助嘻嘻采纳,获得10
5秒前
复杂的薯片完成签到,获得积分10
6秒前
CipherSage应助曹小妍采纳,获得10
6秒前
8秒前
Cisplatin发布了新的文献求助10
9秒前
Yin完成签到,获得积分10
10秒前
12秒前
充电宝应助belly采纳,获得10
12秒前
12秒前
12秒前
朱颜发布了新的文献求助10
13秒前
狗子哥完成签到,获得积分10
13秒前
Hello应助kenna123采纳,获得10
13秒前
14秒前
lll完成签到 ,获得积分10
14秒前
彭于晏应助王涛采纳,获得10
14秒前
16秒前
16秒前
16秒前
li完成签到 ,获得积分10
17秒前
17秒前
优美从菡发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
睿O宝宝O完成签到 ,获得积分10
20秒前
耳喃完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474