Porous Au–Ag Nanoparticles from Galvanic Replacement Applied as Single‐Particle SERS Probe for Quantitative Monitoring

材料科学 纳米壳 等离子体子 拉曼散射 纳米结构 纳米颗粒 纳米技术 多孔性 原电池 表面等离子共振 粒子(生态学) 拉曼光谱 合金 化学工程 光电子学 复合材料 冶金 光学 工程类 地质学 物理 海洋学
作者
Lu Wang,Sergiy Patskovsky,Bastien Gauthier‐Soumis,Michel Meunier
出处
期刊:Small [Wiley]
卷期号:18 (1): e2105209-e2105209 被引量:46
标识
DOI:10.1002/smll.202105209
摘要

Abstract Plasmonic nanostructures have raised the interest of biomedical applications of surface‐enhanced Raman scattering (SERS). To improve the enhancement and produce sensitive SERS probes, porous Au–Ag alloy nanoparticles (NPs) are synthesized by dealloying Au–Ag alloy NP‐precursors with Au or Ag core in aqueous colloidal environment through galvanic replacement reaction. The novel designed core–shell Au–Ag alloy NP‐precursors facilitate controllable synthesis of porous nanostructure, and dealloying degree during the reaction has significant effect on structural and spectral properties of dealloyed porous NPs. Narrow‐dispersed dealloyed NPs are obtained using NPs of Au/Ag ratio from 10/90 to 40/60 with Au and Ag core to produce solid core@porous shell and porous nanoshells, having rough surface, hollowness, and porosity around 30–60%. The clean nanostructure from colloidal synthesis exhibits a redshifted plasmon peak up to near‐infrared region, and the large accessible surface induces highly localized surface plasmon resonance and generates robust SERS activity. Thus, the porous NPs produce intensely enhanced Raman signal up to 68‐fold higher than 100 nm AuNP enhancement at single‐particle level, and the estimated Raman enhancement around 7800, showing the potential for highly sensitive SERS probes. The single‐particle SERS probes are effectively demonstrated in quantitative monitoring of anticancer drug Doxorubicin release.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛曙东完成签到,获得积分10
刚刚
walker发布了新的文献求助10
刚刚
流水应助帅气善斓采纳,获得20
1秒前
领导范儿应助yulong采纳,获得10
1秒前
2秒前
Orange应助语青采纳,获得10
2秒前
lucky完成签到,获得积分10
2秒前
Chicophy发布了新的文献求助10
2秒前
学术小蜜疯完成签到,获得积分20
2秒前
波安班完成签到,获得积分10
2秒前
入海完成签到,获得积分10
3秒前
3秒前
华仔应助积极行天采纳,获得10
3秒前
娇气的笑蓝完成签到,获得积分10
3秒前
cwy完成签到,获得积分10
3秒前
火星上的万天完成签到,获得积分10
4秒前
隐形曼青应助木木采纳,获得10
5秒前
郑伟李完成签到,获得积分10
5秒前
敏感冰蓝完成签到,获得积分10
6秒前
6秒前
yulijuan完成签到,获得积分20
6秒前
7秒前
7秒前
科研人发布了新的文献求助10
7秒前
fisher完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
汉堡包应助Ying采纳,获得10
8秒前
9秒前
9秒前
10秒前
teriteri发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
乐观寻雪发布了新的文献求助10
10秒前
深情安青应助看文献了采纳,获得10
10秒前
ww发布了新的文献求助10
11秒前
见贤思齐完成签到,获得积分10
11秒前
随遇而安完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659562
求助须知:如何正确求助?哪些是违规求助? 4829240
关于积分的说明 15087439
捐赠科研通 4818213
什么是DOI,文献DOI怎么找? 2578560
邀请新用户注册赠送积分活动 1533165
关于科研通互助平台的介绍 1491867