Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to Intensive care unit

可解释性 重症监护室 系列(地层学) 计算机科学 医学 单位(环理论) 深度学习 重症监护医学 人工智能 机器学习 心理学 生物 数学教育 古生物学
作者
Ilaria Gandin,Arjuna Scagnetto,Simona Romani,Giulia Barbati
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:121: 103876-103876 被引量:39
标识
DOI:10.1016/j.jbi.2021.103876
摘要

Interpretability is fundamental in healthcare problems and the lack of it in deep learning models is currently the major barrier in the usage of such powerful algorithms in the field. The study describes the implementation of an attention layer for Long Short-Term Memory (LSTM) neural network that provides a useful picture on the influence of the several input variables included in the model. A cohort of 10,616 patients with cardiovascular diseases is selected from the MIMIC III dataset, an openly available database of electronic health records (EHRs) including all patients admitted to an ICU at Boston's Medical Centre. For each patient, we consider a 10-length sequence of 1-hour windows in which 48 clinical parameters are extracted to predict the occurrence of death in the next 7 days. Inspired from the recent developments in the field of attention mechanisms for sequential data, we implement a recurrent neural network with LSTM cells incorporating an attention mechanism to identify features driving model's decisions over time. The performance of the LSTM model, measured in terms of AUC, is 0.790 (SD = 0.015). Regard our primary objective, i.e. model interpretability, we investigate the role of attention weights. We find good correspondence with driving predictors of a transparent model (r = 0.611, 95% CI [0.395, 0.763]). Moreover, most influential features identified at the cohort-level emerge as known risk factors in the clinical context. Despite the limitations of study dataset, this work brings further evidence of the potential of attention mechanisms in making deep learning model more interpretable and suggests the application of this strategy for the sequential analysis of EHRs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_5Zl9D8完成签到,获得积分10
2秒前
罗密欧与傅里叶完成签到 ,获得积分10
5秒前
大个应助nwds采纳,获得10
6秒前
7秒前
Dr.Xu发布了新的文献求助10
10秒前
10秒前
10秒前
ai123456完成签到,获得积分20
14秒前
16秒前
Hou发布了新的文献求助10
17秒前
科研通AI5应助chuchu采纳,获得30
17秒前
飘逸的寄柔完成签到 ,获得积分10
17秒前
冷雨完成签到,获得积分10
17秒前
科研通AI5应助narul采纳,获得10
18秒前
青青完成签到,获得积分10
19秒前
JamesPei应助缥缈的龙猫采纳,获得10
19秒前
20秒前
研友_qZ6V1Z完成签到,获得积分10
21秒前
慕青应助Dr.Xu采纳,获得10
21秒前
xx完成签到 ,获得积分10
21秒前
22秒前
23秒前
鲨鱼辣椒发布了新的文献求助10
25秒前
娜写年华完成签到 ,获得积分10
28秒前
29秒前
桃子完成签到,获得积分10
30秒前
31秒前
归尘发布了新的文献求助10
33秒前
NSS发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
35秒前
37秒前
38秒前
科研通AI5应助鲨鱼辣椒采纳,获得10
38秒前
39秒前
39秒前
mather发布了新的文献求助10
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743446
求助须知:如何正确求助?哪些是违规求助? 3286024
关于积分的说明 10048994
捐赠科研通 3002666
什么是DOI,文献DOI怎么找? 1648306
邀请新用户注册赠送积分活动 784617
科研通“疑难数据库(出版商)”最低求助积分说明 750780