清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound

分割 深度学习 基本事实 人工智能 颈内动脉 超声波 颈总动脉 模式识别(心理学) 交叉熵 计算机科学 颈动脉 医学 放射科 内科学
作者
Pankaj K. Jain,Neeraj Sharma,A Giannopoulos,Luca Saba,Andrew Nicolaides,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104721-104721 被引量:109
标识
DOI:10.1016/j.compbiomed.2021.104721
摘要

The automated and accurate carotid plaque segmentation in B-mode ultrasound (US) is an essential part of stroke risk stratification. Previous segmented methods used AtheroEdge™ 2.0 (AtheroPoint™, Roseville, CA) for the common carotid artery (CCA). This study focuses on automated plaque segmentation in the internal carotid artery (ICA) using solo deep learning (SDL) and hybrid deep learning (HDL) models. The methodology consists of a novel design of 10 types of SDL/HDL models (AtheroEdge™ 3.0 systems (AtheroPoint™, Roseville, CA) with a depth of four layers each. Five of the models use cross-entropy (CE)-loss, and the other five models use Dice similarity coefficient (DSC)-loss functions derived from UNet, UNet+, SegNet, SegNet-UNet, and SegNet-UNet+. The K10 protocol (Train:Test:90%:10%) was applied for all 10 models for training and predicting (segmenting) the plaque region, which was then quantified to compute the plaque area in mm2. Further, the data augmentation effect was analyzed. The database consisted of 970 ICA B-mode US scans taken from 99 moderate to high-risk patients. Using the difference area threshold of 10 mm2 between ground truth (GT) and artificial intelligence (AI), the area under the curve (AUC) values were 0.91, 0.911, 0.908, 0.905, and 0.898, all with a p-value of <0.001 (for CE-loss models) and 0.883, 0.889, 0.905, 0.889, and 0.907, all with a p-value of <0.001 (for DSC-loss models). The correlations between the AI-based plaque area and GT plaque area were 0.98, 0.96, 0.97, 0.98, and 0.97, all with a p-value of <0.001 (for CE-loss models) and 0.98, 0.98, 0.97, 0.98, and 0.98 (for DSC-loss models). Overall, the online system performs plaque segmentation in less than 1 s. We validate our hypothesis that HDL and SDL models demonstrate comparable performance. SegNet-UNet was the best-performing hybrid architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助30
1秒前
夏傥完成签到,获得积分10
4秒前
6秒前
酷波er应助潇洒的砖家采纳,获得10
12秒前
雪山飞龙完成签到,获得积分10
13秒前
南风完成签到,获得积分10
15秒前
雪山飞龙发布了新的文献求助10
16秒前
29秒前
雪山飞龙发布了新的文献求助10
34秒前
34秒前
廖先生完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
41秒前
潇洒的砖家完成签到,获得积分10
42秒前
1分钟前
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
安静的ky完成签到 ,获得积分10
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
烟花应助Wang采纳,获得10
1分钟前
rioo发布了新的文献求助10
1分钟前
斯文败类应助Dz1990m采纳,获得10
1分钟前
小西完成签到 ,获得积分10
1分钟前
suobawan_发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
suobawan_完成签到,获得积分10
1分钟前
Dz1990m发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
加贝完成签到 ,获得积分10
2分钟前
CipherSage应助MXX采纳,获得10
2分钟前
2分钟前
2分钟前
楠子发布了新的文献求助10
2分钟前
2分钟前
yao完成签到 ,获得积分10
2分钟前
rioo发布了新的文献求助10
2分钟前
MXX发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292