Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound

分割 深度学习 基本事实 人工智能 颈内动脉 超声波 颈总动脉 模式识别(心理学) 交叉熵 计算机科学 颈动脉 医学 放射科 内科学
作者
Pankaj K. Jain,Neeraj Sharma,A Giannopoulos,Luca Saba,Andrew Nicolaides,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104721-104721 被引量:96
标识
DOI:10.1016/j.compbiomed.2021.104721
摘要

The automated and accurate carotid plaque segmentation in B-mode ultrasound (US) is an essential part of stroke risk stratification. Previous segmented methods used AtheroEdge™ 2.0 (AtheroPoint™, Roseville, CA) for the common carotid artery (CCA). This study focuses on automated plaque segmentation in the internal carotid artery (ICA) using solo deep learning (SDL) and hybrid deep learning (HDL) models. The methodology consists of a novel design of 10 types of SDL/HDL models (AtheroEdge™ 3.0 systems (AtheroPoint™, Roseville, CA) with a depth of four layers each. Five of the models use cross-entropy (CE)-loss, and the other five models use Dice similarity coefficient (DSC)-loss functions derived from UNet, UNet+, SegNet, SegNet-UNet, and SegNet-UNet+. The K10 protocol (Train:Test:90%:10%) was applied for all 10 models for training and predicting (segmenting) the plaque region, which was then quantified to compute the plaque area in mm2. Further, the data augmentation effect was analyzed. The database consisted of 970 ICA B-mode US scans taken from 99 moderate to high-risk patients. Using the difference area threshold of 10 mm2 between ground truth (GT) and artificial intelligence (AI), the area under the curve (AUC) values were 0.91, 0.911, 0.908, 0.905, and 0.898, all with a p-value of <0.001 (for CE-loss models) and 0.883, 0.889, 0.905, 0.889, and 0.907, all with a p-value of <0.001 (for DSC-loss models). The correlations between the AI-based plaque area and GT plaque area were 0.98, 0.96, 0.97, 0.98, and 0.97, all with a p-value of <0.001 (for CE-loss models) and 0.98, 0.98, 0.97, 0.98, and 0.98 (for DSC-loss models). Overall, the online system performs plaque segmentation in less than 1 s. We validate our hypothesis that HDL and SDL models demonstrate comparable performance. SegNet-UNet was the best-performing hybrid architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋婷完成签到 ,获得积分10
1秒前
玄音完成签到,获得积分10
1秒前
杳鸢应助scirev采纳,获得30
4秒前
5秒前
梓然发布了新的文献求助10
6秒前
Ava应助拾柒采纳,获得10
8秒前
betsy完成签到,获得积分10
10秒前
南桑发布了新的文献求助10
10秒前
pluto应助Claishenjun采纳,获得10
11秒前
11秒前
11秒前
Chenjl发布了新的文献求助10
13秒前
14秒前
yibo完成签到,获得积分10
14秒前
15秒前
万幸鹿完成签到,获得积分10
15秒前
所所应助南桑采纳,获得10
15秒前
南辰辰完成签到,获得积分10
16秒前
16秒前
16秒前
小凉发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
非要叫我起个昵称完成签到,获得积分10
19秒前
Trankhaiuy发布了新的文献求助10
20秒前
le000000完成签到,获得积分10
20秒前
周游完成签到,获得积分10
21秒前
聪明梦容发布了新的文献求助10
22秒前
22秒前
小羊羔子完成签到,获得积分20
23秒前
ISLAND发布了新的文献求助10
23秒前
王翎力发布了新的文献求助10
24秒前
zjkzh完成签到 ,获得积分10
25秒前
小凉完成签到,获得积分20
25秒前
tingyeh完成签到,获得积分10
26秒前
蛋挞豆花发布了新的文献求助10
27秒前
无所不能的虫虫完成签到,获得积分10
28秒前
ISLAND完成签到,获得积分20
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292260
求助须知:如何正确求助?哪些是违规求助? 2928610
关于积分的说明 8437846
捐赠科研通 2600642
什么是DOI,文献DOI怎么找? 1419193
科研通“疑难数据库(出版商)”最低求助积分说明 660251
邀请新用户注册赠送积分活动 642906