清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Object-based island green cover mapping by integrating UAV multispectral image and LiDAR data

多光谱图像 遥感 激光雷达 土地覆盖 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 特征提取 随机森林 计算机视觉 地理 土地利用 语言学 哲学 土木工程 工程类
作者
Hao Liu,Pengfeng Xiao,Xueliang Zhang,Xinghua Zhou,Jie Li,Rui Guo
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:15 (03) 被引量:2
标识
DOI:10.1117/1.jrs.15.034512
摘要

The unmanned aerial vehicle (UAV) plays an increasingly important role in monitoring and managing islands recently for their high feasibility and the miniaturization of sensors, which provide new possibilities for accurate island green cover mapping. We developed a framework that integrates UAV-acquired high-spatial resolution multispectral image and LiDAR data for effective object-based green cover mapping of Donkey Island in the Yellow Sea, China. LiDAR-derived structural and intensity information were combined with multispectral-derived spectral information for obtaining green cover objects. Five kinds of feature types [i.e., spectral, texture, height, intensity, and geometry features (GFs)] were calculated based on each object for green cover classification. Meanwhile, a multiple classifier system was adopted to improve the classification accuracy. The results indicate that the accuracy of green cover mapping could be significantly improved by the combination of multiple feature types. The inclusion of height and intensity features (IFs) can increase the overall classification accuracy by 7% and 5%, respectively, but the statistical significant differences are not found between these two feature types. The best green cover map is generated via a feature group obtained by the sequential backward selection with random forest method, reaching an overall accuracy of 88.5% and overall disagreement of 18.5%. Among the three major green cover classes, the accuracy of shrub class mapping improves the most when compared to classification using individual data, followed by tree and grass. Analysis of feature importance implies that spectral, height, and IFs are more beneficial to green cover mapping compared to texture and GFs. Furthermore, integrating multispectral and LiDAR data can provide more reliable green cover distribution maps and reduce the classification uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGBond完成签到 ,获得积分10
31秒前
朴实乐天完成签到 ,获得积分10
35秒前
49秒前
zhanglh完成签到 ,获得积分10
1分钟前
2分钟前
imi完成签到 ,获得积分0
2分钟前
ranj完成签到,获得积分10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
飘逸锦程完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
守墓人完成签到 ,获得积分10
4分钟前
4分钟前
Joeswith完成签到,获得积分10
5分钟前
超级的妙晴完成签到 ,获得积分10
5分钟前
dreamwalk完成签到 ,获得积分10
5分钟前
葫芦芦芦完成签到 ,获得积分10
5分钟前
5分钟前
MishimaErika发布了新的文献求助20
5分钟前
淞淞于我完成签到 ,获得积分10
5分钟前
5分钟前
时尚丹寒完成签到 ,获得积分10
5分钟前
MishimaErika完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
炜大的我应助科研通管家采纳,获得10
7分钟前
wickedzz完成签到,获得积分10
7分钟前
紫熊完成签到,获得积分10
7分钟前
jwq完成签到,获得积分10
7分钟前
LIVE完成签到,获得积分10
7分钟前
Ji完成签到,获得积分10
7分钟前
7分钟前
jerry完成签到 ,获得积分10
8分钟前
或无情完成签到 ,获得积分10
8分钟前
嬗变的天秤完成签到,获得积分10
8分钟前
8分钟前
creep2020完成签到,获得积分10
9分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3381348
求助须知:如何正确求助?哪些是违规求助? 2996254
关于积分的说明 8767871
捐赠科研通 2681518
什么是DOI,文献DOI怎么找? 1468546
科研通“疑难数据库(出版商)”最低求助积分说明 679041
邀请新用户注册赠送积分活动 671114