已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks

二部图 计算机科学 杠杆(统计) 一般化 理论计算机科学 节点(物理) 水准点(测量) 图形 复杂网络 人工智能 数据挖掘 机器学习 数学 地理 大地测量学 万维网 数学分析 工程类 结构工程
作者
Haitao Fu,Feng Huang,Xuan Li,Qi Yang,Wen Zhang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (2): 426-434 被引量:24
标识
DOI:10.1093/bioinformatics/btab651
摘要

Abstract Motivation There are various interaction/association bipartite networks in biomolecular systems. Identifying unobserved links in biomedical bipartite networks helps to understand the underlying molecular mechanisms of human complex diseases and thus benefits the diagnosis and treatment of diseases. Although a great number of computational methods have been proposed to predict links in biomedical bipartite networks, most of them heavily depend on features and structures involving the bioentities in one specific bipartite network, which limits the generalization capacity of applying the models to other bipartite networks. Meanwhile, bioentities usually have multiple features, and how to leverage them has also been challenging. Results In this study, we propose a novel multi-view graph convolution network (MVGCN) framework for link prediction in biomedical bipartite networks. We first construct a multi-view heterogeneous network (MVHN) by combining the similarity networks with the biomedical bipartite network, and then perform a self-supervised learning strategy on the bipartite network to obtain node attributes as initial embeddings. Further, a neighborhood information aggregation (NIA) layer is designed for iteratively updating the embeddings of nodes by aggregating information from inter- and intra-domain neighbors in every view of the MVHN. Next, we combine embeddings of multiple NIA layers in each view, and integrate multiple views to obtain the final node embeddings, which are then fed into a discriminator to predict the existence of links. Extensive experiments show MVGCN performs better than or on par with baseline methods and has the generalization capacity on six benchmark datasets involving three typical tasks. Availability and implementation Source code and data can be downloaded from https://github.com/fuhaitao95/MVGCN. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助HOME采纳,获得10
2秒前
li发布了新的文献求助10
3秒前
sweet甜昕完成签到 ,获得积分10
4秒前
myp完成签到,获得积分10
6秒前
6秒前
gxun发布了新的文献求助10
11秒前
12秒前
乐观夜春完成签到,获得积分10
14秒前
14秒前
li完成签到,获得积分20
15秒前
成美完成签到,获得积分10
16秒前
hero发布了新的文献求助10
17秒前
Akim应助Jenana采纳,获得10
17秒前
18秒前
19秒前
cheng发布了新的文献求助10
19秒前
酷波er应助时尚的小虾米采纳,获得10
20秒前
Goodluck完成签到 ,获得积分10
21秒前
kmac完成签到,获得积分10
22秒前
allshestar完成签到 ,获得积分0
22秒前
所所应助难过小懒虫采纳,获得10
23秒前
kk发布了新的文献求助10
24秒前
24秒前
gds发布了新的文献求助10
24秒前
gxun完成签到,获得积分10
25秒前
25秒前
大模型应助lixuegang2023采纳,获得10
26秒前
26秒前
kmac发布了新的文献求助10
26秒前
HOME完成签到,获得积分10
28秒前
Zzzhu完成签到,获得积分10
28秒前
30秒前
祖三问发布了新的文献求助10
30秒前
32秒前
Jenana发布了新的文献求助10
33秒前
今后应助王子采纳,获得10
34秒前
34秒前
tengyi完成签到 ,获得积分10
34秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766862
求助须知:如何正确求助?哪些是违规求助? 3311308
关于积分的说明 10158068
捐赠科研通 3026381
什么是DOI,文献DOI怎么找? 1661133
邀请新用户注册赠送积分活动 793858
科研通“疑难数据库(出版商)”最低求助积分说明 755846