MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks

二部图 计算机科学 杠杆(统计) 一般化 理论计算机科学 节点(物理) 水准点(测量) 图形 复杂网络 人工智能 数据挖掘 机器学习 数学 地理 大地测量学 万维网 数学分析 工程类 结构工程
作者
Haitao Fu,Feng Huang,Xuan Li,Qi Yang,Wen Zhang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (2): 426-434 被引量:24
标识
DOI:10.1093/bioinformatics/btab651
摘要

Abstract Motivation There are various interaction/association bipartite networks in biomolecular systems. Identifying unobserved links in biomedical bipartite networks helps to understand the underlying molecular mechanisms of human complex diseases and thus benefits the diagnosis and treatment of diseases. Although a great number of computational methods have been proposed to predict links in biomedical bipartite networks, most of them heavily depend on features and structures involving the bioentities in one specific bipartite network, which limits the generalization capacity of applying the models to other bipartite networks. Meanwhile, bioentities usually have multiple features, and how to leverage them has also been challenging. Results In this study, we propose a novel multi-view graph convolution network (MVGCN) framework for link prediction in biomedical bipartite networks. We first construct a multi-view heterogeneous network (MVHN) by combining the similarity networks with the biomedical bipartite network, and then perform a self-supervised learning strategy on the bipartite network to obtain node attributes as initial embeddings. Further, a neighborhood information aggregation (NIA) layer is designed for iteratively updating the embeddings of nodes by aggregating information from inter- and intra-domain neighbors in every view of the MVHN. Next, we combine embeddings of multiple NIA layers in each view, and integrate multiple views to obtain the final node embeddings, which are then fed into a discriminator to predict the existence of links. Extensive experiments show MVGCN performs better than or on par with baseline methods and has the generalization capacity on six benchmark datasets involving three typical tasks. Availability and implementation Source code and data can be downloaded from https://github.com/fuhaitao95/MVGCN. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小何发布了新的文献求助10
1秒前
小鸣完成签到 ,获得积分10
2秒前
2秒前
李迅迅发布了新的文献求助10
2秒前
包容秋荷发布了新的文献求助20
5秒前
唠叨的若冰完成签到 ,获得积分10
5秒前
顾矜应助超能力采纳,获得10
5秒前
翻羽发布了新的文献求助10
6秒前
orixero应助白之玉采纳,获得10
7秒前
7秒前
7秒前
7秒前
JamesPei应助安静海露采纳,获得10
8秒前
一一发布了新的文献求助10
9秒前
zorro3574发布了新的文献求助10
11秒前
Gha完成签到,获得积分20
12秒前
12秒前
小大夫发布了新的文献求助10
13秒前
无情招牌完成签到,获得积分10
13秒前
无情招牌发布了新的文献求助10
16秒前
爆米花应助111采纳,获得10
18秒前
NexusExplorer应助啦啦啦采纳,获得100
18秒前
Gha发布了新的文献求助10
19秒前
20秒前
吴海娇完成签到,获得积分10
20秒前
飞逝的快乐时光完成签到 ,获得积分10
21秒前
ekko完成签到 ,获得积分10
21秒前
否极泰来完成签到,获得积分10
22秒前
24秒前
阿洁发布了新的文献求助20
25秒前
超能力完成签到,获得积分10
25秒前
小太阳完成签到,获得积分10
25秒前
Lucas应助zorro3574采纳,获得10
27秒前
28秒前
欣喜宛亦完成签到 ,获得积分10
28秒前
28秒前
111发布了新的文献求助10
29秒前
30秒前
在水一方应助LIFE2020采纳,获得10
31秒前
eye发布了新的文献求助20
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021