MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks

二部图 计算机科学 杠杆(统计) 一般化 理论计算机科学 节点(物理) 水准点(测量) 图形 复杂网络 人工智能 数据挖掘 机器学习 数学 地理 大地测量学 万维网 数学分析 工程类 结构工程
作者
Haitao Fu,Feng Huang,Xuan Li,Qi Yang,Wen Zhang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (2): 426-434 被引量:24
标识
DOI:10.1093/bioinformatics/btab651
摘要

Abstract Motivation There are various interaction/association bipartite networks in biomolecular systems. Identifying unobserved links in biomedical bipartite networks helps to understand the underlying molecular mechanisms of human complex diseases and thus benefits the diagnosis and treatment of diseases. Although a great number of computational methods have been proposed to predict links in biomedical bipartite networks, most of them heavily depend on features and structures involving the bioentities in one specific bipartite network, which limits the generalization capacity of applying the models to other bipartite networks. Meanwhile, bioentities usually have multiple features, and how to leverage them has also been challenging. Results In this study, we propose a novel multi-view graph convolution network (MVGCN) framework for link prediction in biomedical bipartite networks. We first construct a multi-view heterogeneous network (MVHN) by combining the similarity networks with the biomedical bipartite network, and then perform a self-supervised learning strategy on the bipartite network to obtain node attributes as initial embeddings. Further, a neighborhood information aggregation (NIA) layer is designed for iteratively updating the embeddings of nodes by aggregating information from inter- and intra-domain neighbors in every view of the MVHN. Next, we combine embeddings of multiple NIA layers in each view, and integrate multiple views to obtain the final node embeddings, which are then fed into a discriminator to predict the existence of links. Extensive experiments show MVGCN performs better than or on par with baseline methods and has the generalization capacity on six benchmark datasets involving three typical tasks. Availability and implementation Source code and data can be downloaded from https://github.com/fuhaitao95/MVGCN. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助李纪磊采纳,获得10
刚刚
1秒前
李佳轩发布了新的文献求助10
2秒前
笑点低的白莲完成签到,获得积分10
2秒前
cloud发布了新的文献求助30
4秒前
6秒前
6秒前
小星星完成签到 ,获得积分10
6秒前
7秒前
8秒前
9秒前
10秒前
10秒前
Magic完成签到,获得积分10
10秒前
马赫关注了科研通微信公众号
10秒前
王灿灿应助Ricks12138采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
sutharsons应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
12秒前
sutharsons应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Lilyzi发布了新的文献求助10
13秒前
ly完成签到,获得积分10
13秒前
可爱的函函应助义气冷菱采纳,获得10
14秒前
lmh完成签到 ,获得积分10
15秒前
15秒前
酷波er应助yongren采纳,获得10
15秒前
js完成签到,获得积分10
16秒前
NexusExplorer应助陶醉的匕采纳,获得10
16秒前
科研民工Jay完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3175018
求助须知:如何正确求助?哪些是违规求助? 2826018
关于积分的说明 7955800
捐赠科研通 2487010
什么是DOI,文献DOI怎么找? 1325713
科研通“疑难数据库(出版商)”最低求助积分说明 634548
版权声明 602734