去细胞化
软骨
细胞外基质
再生(生物学)
肋软骨
糖胺聚糖
解剖
生物医学工程
材料科学
组织工程
病理
医学
细胞生物学
生物
作者
Changchen Wang,Wang Hongquan,Bo Zhang,Xia Leilei,Haiyue Jiang,Bo Pan
标识
DOI:10.1016/j.actbio.2021.09.031
摘要
After harvesting multiple costal cartilages, the local defect disrupts the integrity of the chest wall and may lead to obvious thoracic complications, such as local depression and asymmetry of the bilateral thoracic height. Decellularized materials have been used for tissue reconstruction in clinical surgeries. To apply xenogenic decellularized cartilage in costal cartilage defects, porcine-derived auricular and costal cartilage was tested for characterization, cytotoxicity, macrophage response, and tissue regeneration. Most of the DNA and α-Gal were effectively removed, and the collagen was well preserved after the decellularization process. The glycosaminoglycan (GAG) content decreased significantly compared to that in untreated cartilage. The decellularized auricular cartilage had a larger pore size, more pores, and a higher degradation rate than the decellularized costal cartilage. No apparent nuclei or structural damage was observed in the extracellular matrix. The decellularized auricular cartilage had a higher cell proliferation rate and more prominent immunomodulatory effect than the other groups. Two types of decellularized cartilage, particularly decellularized auricular cartilage, promoted the tissue regeneration in the cartilage defect area, combined with noticeable cartilage morphology and increased chondrogenic gene expression. In our research, the functional components and structure of the extracellular matrix were well preserved after the decellularization process. The decellularized cartilage had better biocompatibility and suitable microenvironment for tissue regeneration in the defect area, suggesting its potential application in cartilage repair during the surgery. STATEMENT OF SIGNIFICANCE: Autologous costal cartilage has been widely used in various surgeries, while the cartilage defects after the harvesting of multiple costal cartilages may cause localized chest wall deformities. Decellularized cartilage is an ideal material that could be produced in the factory and applied in surgeries. In this study, both decellularized costal cartilage and auricular cartilage preserved original structure, functional biocompatibility, immunosuppressive effects, and promoted tissue regeneration in the cartilage defect area.
科研通智能强力驱动
Strongly Powered by AbleSci AI