亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助袁咏琳冲冲冲采纳,获得10
10秒前
eye发布了新的文献求助10
11秒前
香风智乃完成签到 ,获得积分10
16秒前
18秒前
18秒前
Mtx3098520564完成签到 ,获得积分10
18秒前
20秒前
23秒前
25秒前
深情安青应助迷人问兰采纳,获得30
25秒前
万能图书馆应助eye采纳,获得10
26秒前
yangyajie发布了新的文献求助10
26秒前
jjj完成签到 ,获得积分10
28秒前
Kaite完成签到,获得积分10
33秒前
美满的高丽完成签到 ,获得积分10
39秒前
郭燥发布了新的文献求助10
42秒前
53秒前
Brain完成签到 ,获得积分10
55秒前
Vaseegara完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
北觅完成签到 ,获得积分10
1分钟前
哈哈哈完成签到,获得积分10
1分钟前
1分钟前
学术智子完成签到,获得积分10
1分钟前
迷人问兰完成签到,获得积分10
1分钟前
迷人问兰发布了新的文献求助30
1分钟前
1分钟前
阿丕啊呸完成签到,获得积分10
1分钟前
罗舒发布了新的文献求助10
1分钟前
Lion完成签到,获得积分10
1分钟前
1分钟前
1分钟前
罗舒完成签到,获得积分10
1分钟前
PAD发布了新的文献求助10
1分钟前
正宗完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助舒芙蕾采纳,获得10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176