亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zert发布了新的文献求助10
1秒前
学术悍匪发布了新的文献求助10
3秒前
鱼粥1111发布了新的文献求助10
5秒前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
puuuunido完成签到 ,获得积分10
1分钟前
1分钟前
生动项链发布了新的文献求助10
1分钟前
Doctor.TANG完成签到 ,获得积分10
1分钟前
小蘑菇应助xuan采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
浮游应助ywy采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
动听千秋完成签到 ,获得积分10
2分钟前
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
Orange应助ORAzzz采纳,获得10
3分钟前
3分钟前
兴奋秋珊发布了新的文献求助10
3分钟前
3分钟前
3分钟前
兴奋秋珊发布了新的文献求助10
3分钟前
3分钟前
兴奋秋珊发布了新的文献求助10
3分钟前
领导范儿应助xuan采纳,获得10
3分钟前
3分钟前
3分钟前
兴奋秋珊发布了新的文献求助10
3分钟前
3分钟前
xuan发布了新的文献求助10
4分钟前
大个应助着急的书白采纳,获得10
4分钟前
4分钟前
李爱国应助慕青采纳,获得10
4分钟前
粥粥完成签到 ,获得积分10
4分钟前
兴奋秋珊发布了新的文献求助10
4分钟前
浮游应助ywy采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346307
求助须知:如何正确求助?哪些是违规求助? 4480984
关于积分的说明 13947084
捐赠科研通 4378742
什么是DOI,文献DOI怎么找? 2406045
邀请新用户注册赠送积分活动 1398580
关于科研通互助平台的介绍 1371291