Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AWESOME Ling完成签到,获得积分10
4秒前
微风往事完成签到,获得积分10
5秒前
6秒前
灿华完成签到 ,获得积分10
6秒前
激昂的紫烟完成签到 ,获得积分10
6秒前
AWESOME Ling发布了新的文献求助10
7秒前
7秒前
险胜应助青藤采纳,获得10
8秒前
毛儿豆儿完成签到,获得积分10
8秒前
gg关闭了gg文献求助
9秒前
357发布了新的文献求助30
10秒前
11秒前
NN完成签到 ,获得积分10
11秒前
活力太兰完成签到,获得积分10
11秒前
bujiachong完成签到,获得积分20
12秒前
阳yang完成签到,获得积分10
12秒前
laohu完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
高大的莞发布了新的文献求助10
15秒前
16秒前
17秒前
思琪完成签到,获得积分10
19秒前
19秒前
20秒前
wankai发布了新的文献求助10
21秒前
22秒前
星光灿烂完成签到,获得积分20
22秒前
大模型应助科研通管家采纳,获得10
23秒前
顾矜应助科研通管家采纳,获得10
23秒前
张益萌应助科研通管家采纳,获得20
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
24秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302000
求助须知:如何正确求助?哪些是违规求助? 2936552
关于积分的说明 8477981
捐赠科研通 2610247
什么是DOI,文献DOI怎么找? 1425064
科研通“疑难数据库(出版商)”最低求助积分说明 662289
邀请新用户注册赠送积分活动 646456