Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_89mvO8完成签到,获得积分10
1秒前
阳光的丹雪完成签到,获得积分10
2秒前
2秒前
黄文龙发布了新的文献求助10
3秒前
3秒前
lixm发布了新的文献求助10
5秒前
vergegung关注了科研通微信公众号
5秒前
超级哑铃完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
HAI发布了新的文献求助10
6秒前
6秒前
汉堡包应助清新的烤鸡采纳,获得30
6秒前
7秒前
7秒前
林子青发布了新的文献求助20
7秒前
7秒前
bobopoi发布了新的文献求助10
8秒前
柚C美式完成签到 ,获得积分10
8秒前
9秒前
10秒前
红糖发糕完成签到 ,获得积分10
11秒前
风趣白秋发布了新的文献求助10
12秒前
apathy发布了新的文献求助10
13秒前
13秒前
llll完成签到,获得积分10
13秒前
13秒前
淡然天问发布了新的文献求助30
13秒前
朱事顺利完成签到,获得积分10
13秒前
14秒前
MailkMonk发布了新的文献求助10
14秒前
15秒前
chua1212123发布了新的文献求助10
16秒前
斯文败类应助欧阳采纳,获得10
17秒前
小科发布了新的文献求助10
17秒前
17秒前
18秒前
Alicia发布了新的文献求助200
18秒前
量子星尘发布了新的文献求助10
19秒前
fire发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626820
求助须知:如何正确求助?哪些是违规求助? 4712727
关于积分的说明 14960335
捐赠科研通 4782760
什么是DOI,文献DOI怎么找? 2554542
邀请新用户注册赠送积分活动 1516181
关于科研通互助平台的介绍 1476457