亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
npknpk完成签到,获得积分20
2秒前
Algernoon完成签到,获得积分10
3秒前
4秒前
6秒前
7秒前
跳跃的愫发布了新的文献求助10
8秒前
sys549发布了新的文献求助10
11秒前
11秒前
科研通AI6.1应助utopia采纳,获得10
12秒前
Magic麦发布了新的文献求助10
13秒前
15秒前
18秒前
bzlish发布了新的文献求助10
20秒前
黑神白了发布了新的文献求助20
25秒前
科目三应助bzlish采纳,获得10
27秒前
bzlish完成签到,获得积分10
34秒前
37秒前
41秒前
utopia发布了新的文献求助10
48秒前
48秒前
852应助Magic麦采纳,获得10
50秒前
1分钟前
PP发布了新的文献求助10
1分钟前
PP关闭了PP文献求助
1分钟前
1分钟前
1分钟前
lhr发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Jankin完成签到 ,获得积分10
1分钟前
Fan应助lhr采纳,获得10
1分钟前
顾矜应助lhr采纳,获得10
1分钟前
1分钟前
PP完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642