Intelligent Cruise Guidance and Vehicle Resource Management with Deep Reinforcement Learning

计算机科学 强化学习 巡航 资源管理(计算)
作者
Guolin Sun,Kai Liu,Gordon Owusu Boateng,Guisong Liu,Wei Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
标识
DOI:10.1109/jiot.2021.3098779
摘要

The emergence of new business and technological models for urban-related transportation has revealed the need for transportation network companies (TNCs). Most research works on TNCs optimize the interests of drivers, passengers and the operator assuming vehicle resources remain unchanged, but ignore the optimization of resource utilization and satisfaction from the perspective of flexible and controllable vehicle resources. In fact, the load of the scene is variable in time, which necessitates flexible control of resources. Drivers wish to effectively utilize their vehicle resources to maximize profits. Passengers desire to spend minimum time waiting and the platform cares about the commission they can accrue from successful trips. In this paper, we propose an adaptive intelligent cruise guidance and vehicle resource management model to balance vehicle resource utilization and request success rate, while improving platform revenue. We propose an advanced deep reinforcement learning (DRL) method to autonomously learn the statuses and guide the vehicles to hotspot areas where they can pick orders. We assume the number of online vehicles in the scene is flexible and the learning agent can autonomously change the number of online vehicles in the system according to the real-time load to improve effective vehicle resource utilization. An adaptive reward mechanism is enforced to control the importance of vehicle resource utilization and request success rate at decision steps. Simulation results and analysis reveal that our proposed DRL-based scheme balances vehicle resource utilization and request success rate at acceptable levels while improving the platform revenue, compared with other baseline algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
华仔应助摸鱼鱼采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Sun完成签到 ,获得积分10
4秒前
天天快乐应助HJJHJH采纳,获得10
4秒前
wzt发布了新的文献求助10
4秒前
4秒前
ding应助GR采纳,获得10
4秒前
临风听暮蝉完成签到,获得积分10
5秒前
共享精神应助zaq777brats采纳,获得10
6秒前
呀呀呀发布了新的文献求助10
6秒前
SAY发布了新的文献求助10
6秒前
ji关闭了ji文献求助
7秒前
一区种子选手完成签到,获得积分10
7秒前
jqs完成签到,获得积分10
7秒前
dhan发布了新的文献求助10
8秒前
8秒前
9秒前
陈功发布了新的文献求助10
9秒前
zkwgly完成签到,获得积分10
10秒前
深情安青应助uu采纳,获得10
10秒前
11秒前
11秒前
QQ完成签到 ,获得积分10
12秒前
英姑应助罗雪采纳,获得30
13秒前
五颜六色的白完成签到,获得积分10
13秒前
zkwgly发布了新的文献求助10
13秒前
科研通AI6应助lisier采纳,获得10
14秒前
科研通AI6应助weidong采纳,获得10
15秒前
15秒前
15秒前
英姑应助尹大大采纳,获得10
15秒前
记忆超群完成签到,获得积分10
16秒前
16秒前
风-FBDD发布了新的文献求助10
16秒前
领导范儿应助fudge采纳,获得10
16秒前
烟花应助曾经以亦采纳,获得30
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521079
求助须知:如何正确求助?哪些是违规求助? 4612571
关于积分的说明 14534355
捐赠科研通 4550094
什么是DOI,文献DOI怎么找? 2493467
邀请新用户注册赠送积分活动 1474588
关于科研通互助平台的介绍 1446154