已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based radiomics for differentiating invasive adenocarcinomas from indolent lung adenocarcinomas appearing as ground-glass nodules: A systematic review

医学 无线电技术 放射科 逻辑回归 核医学 内科学
作者
Lili Shi,Jinli Zhao,Xueqing Peng,Yunpeng Wang,Lei Liu,Meihong Sheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:144: 109956-109956 被引量:15
标识
DOI:10.1016/j.ejrad.2021.109956
摘要

To provide an overview of the available studies investigating the use of computer tomography (CT) radiomics features for differentiating invasive adenocarcinomas (IAC) from indolent lung adenocarcinomas presenting as ground-glass nodules (GGNs), to identify the bias of the studies and to propose directions for future research.PubMed, Embase, Web of Science Core Collection were searched for relevant studies. The studies differentiating IAC from indolent lung adenocarcinomas appearing as GGNs based on CT radiomics features were included. Basic information, patient information, CT-scanner information, technique information and performance information were extracted for each included study. The quality of each study was assessed using the Radiomic Quality Score (RQS) and the Prediction model Risk of Bias Assessment Tool (PROBAST).Twenty-eight studies were included with patients ranging from 34 to 794. All of them were retrospective. Patients in three studies were from multiple centers. Most studies segmented regions of interest manually. Pyradiomics and AK software were the most frequently used for features extraction. The number of radiomics features extracted varied from 7 to 10329. Logistic regression was the most frequently chosen model. Entropy was identified as radiomics signature in seven studies. The AUC of included studies ranged from 0.77 to 0.98 in 15 validation sets. The percentage RQS ranged from 3% to 50%. According to PROBAST, the overall risk of bias (ROB) was high in 89.3% (25/28) of included studies, unclear in 7.1% (2/28) of included studies, and low in 3.6% (1/28) of included studies. All studies were low concern regarding the applicability of primary studies to the review question.CT radiomics-based model is promising and encouraging in differentiating IAC from indolent lung adenocarcinomas, though they require methodological rigor. Well-designed studies are necessary to demonstrate their validity and standardization of methods and results can prompt their use in daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
cnbhhhhh完成签到,获得积分10
3秒前
九日橙完成签到 ,获得积分10
3秒前
刘刘完成签到 ,获得积分10
3秒前
NJD应助科研通管家采纳,获得10
3秒前
MchemG应助科研通管家采纳,获得10
3秒前
NJD应助科研通管家采纳,获得10
3秒前
深情安青应助Cindy采纳,获得10
4秒前
4秒前
所所应助糊涂的雁风采纳,获得10
4秒前
天玄发布了新的文献求助10
5秒前
7秒前
gyh发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
阿豪要发文章完成签到 ,获得积分10
12秒前
yukiing发布了新的文献求助10
12秒前
13秒前
失眠采白完成签到,获得积分10
13秒前
没有蛀牙完成签到,获得积分10
14秒前
Cindy发布了新的文献求助10
16秒前
天天快乐应助胖Q采纳,获得10
17秒前
jiajia发布了新的文献求助10
17秒前
天玄发布了新的文献求助10
17秒前
gyh关闭了gyh文献求助
18秒前
annieduan完成签到 ,获得积分10
18秒前
四月的海棠完成签到 ,获得积分10
20秒前
yukiing完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
JamesPei应助林林林采纳,获得10
22秒前
非洲散打地黄完成签到 ,获得积分10
22秒前
星期八完成签到,获得积分10
22秒前
24秒前
yydsatm发布了新的文献求助10
24秒前
28秒前
28秒前
zhu完成签到,获得积分10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666277
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762566
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185