Detection and Isolation of DoS and Integrity Cyber Attacks in Cyber-Physical Systems with a Neural Network-Based Architecture

灵活性(工程) 信息物理系统 分离(微生物学) 计算机科学 服务拒绝攻击 计算机安全 工业控制系统 控制重构 分布式计算 控制(管理) 工程类 嵌入式系统 人工智能 微生物学 统计 互联网 操作系统 万维网 生物 数学
作者
Carlos M. Paredes,Diego Martínez-Castro,Vrani Ibarra-Junquera,Apolinar González
出处
期刊:Electronics 卷期号:10 (18): 2238-2238 被引量:12
标识
DOI:10.3390/electronics10182238
摘要

New applications of industrial automation request great flexibility in the systems, supported by the increase in the interconnection between its components, allowing access to all the information of the system and its reconfiguration based on the changes that occur during its operations, with the purpose of reaching optimum points of operation. These aspects promote the Smart Factory paradigm, integrating physical and digital systems to create smarts products and processes capable of transforming conventional value chains, forming the Cyber-Physical Systems (CPSs). This flexibility opens a large gap that affects the security of control systems since the new communication links can be used by people to generate attacks that produce risk in these applications. This is a recent problem in the control systems, which originally were centralized and later were implemented as interconnected systems through isolated networks. To protect these systems, strategies that have presented acceptable results in other environments, such as office environments, have been chosen. However, the characteristics of these applications are not the same, and the results achieved are not as expected. This problem has motivated several efforts in order to contribute from different approaches to increase the security of control systems. Based on the above, this work proposes an architecture based on artificial neural networks for detection and isolation of cyber attacks Denial of Service (DoS) and integrity in CPS. Simulation results of two test benches, the Secure Water Treatment (SWaT) dataset, and a tanks system, show the effectiveness of the proposal. Regarding the SWaT dataset, the scores obtained from the recall and F1 score metrics was 0.95 and was higher than other reported works, while, in terms of precision and accuracy, it obtained a score of 0.95 which is close to other proposed methods. With respect to the interconnected tank system, scores of 0.96,0.83,0.81, and 0.83 were obtained for the accuracy, precision, F1 score, and recall metrics, respectively. The high true negatives rate in both cases is noteworthy. In general terms, the proposal has a high effectiveness in detecting and locating the proposed attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性笑白发布了新的文献求助30
1秒前
1秒前
CodeCraft应助战神幽默采纳,获得10
1秒前
Ade完成签到,获得积分10
2秒前
丘比特应助liuzengzhang666采纳,获得10
3秒前
上善若水发布了新的文献求助10
3秒前
4秒前
小哲子完成签到,获得积分20
5秒前
pv2000完成签到,获得积分10
5秒前
5秒前
田様应助小熊软糖采纳,获得10
5秒前
陈淑玲发布了新的文献求助10
6秒前
大鱼完成签到,获得积分10
7秒前
weilei完成签到,获得积分10
7秒前
9秒前
研友_VZG7GZ应助从容诗云采纳,获得10
9秒前
xzz发布了新的文献求助10
10秒前
xkh发布了新的文献求助10
10秒前
bkagyin应助sunshine采纳,获得10
10秒前
文献完成签到,获得积分10
12秒前
飘逸的青雪应助陈淑玲采纳,获得10
12秒前
ZHANES发布了新的文献求助10
14秒前
xzz完成签到,获得积分10
14秒前
贵金属LiLi完成签到,获得积分10
14秒前
ming应助守着她可好采纳,获得10
15秒前
年轻上线完成签到,获得积分10
16秒前
16秒前
16秒前
Zjin宇完成签到,获得积分10
16秒前
zzw关注了科研通微信公众号
17秒前
17秒前
大军门诊完成签到,获得积分10
19秒前
小熊软糖发布了新的文献求助10
20秒前
xkh完成签到,获得积分20
20秒前
NexusExplorer应助decademe采纳,获得10
20秒前
陈淑玲完成签到,获得积分10
20秒前
20秒前
21秒前
飞火完成签到,获得积分10
21秒前
AXXXin完成签到 ,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304015
求助须知:如何正确求助?哪些是违规求助? 2938091
关于积分的说明 8486715
捐赠科研通 2612226
什么是DOI,文献DOI怎么找? 1426575
科研通“疑难数据库(出版商)”最低求助积分说明 662719
邀请新用户注册赠送积分活动 647276