Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation

过度拟合 合成数据 计算机科学 水准点(测量) 人工智能 生成模型 机器学习 数据共享 图像合成 医学影像学 骨料(复合) 数据挖掘 图像(数学) 模式识别(心理学) 数据科学 生成语法 人工神经网络 医学 复合材料 病理 材料科学 替代医学 地理 大地测量学
作者
August DuMont Schütte,Jürgen Hetzel,Sergios Gatidis,Tobias Hepp,Benedikt Dietz,Stefan Bauer,Patrick Schwab
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:25
标识
DOI:10.1038/s41746-021-00507-3
摘要

Abstract Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages. We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real patient-level data in the right setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxh2424发布了新的文献求助30
刚刚
万能图书馆应助YHL采纳,获得10
刚刚
请叫我风吹麦浪应助hu970采纳,获得10
刚刚
传统的慕儿完成签到,获得积分10
1秒前
aurora完成签到 ,获得积分10
1秒前
1秒前
领导范儿应助gyt采纳,获得10
3秒前
麦麦发布了新的文献求助10
3秒前
晴天完成签到,获得积分10
3秒前
龙歪歪完成签到 ,获得积分20
4秒前
Crush完成签到,获得积分0
4秒前
苏照杭应助kydd采纳,获得10
5秒前
英姑应助研友_8yN60L采纳,获得10
5秒前
学术蠕虫完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
中心湖小海棠完成签到,获得积分10
7秒前
Orange应助new_vision采纳,获得10
7秒前
帅气妙彤完成签到,获得积分10
7秒前
ye完成签到,获得积分20
7秒前
易伊澤完成签到,获得积分10
7秒前
不准吃烤肉完成签到,获得积分10
7秒前
8秒前
华仔应助义气绿柳采纳,获得10
9秒前
踏实的诗筠完成签到 ,获得积分10
9秒前
ye发布了新的文献求助10
10秒前
10秒前
Micky发布了新的文献求助10
11秒前
ruxing完成签到,获得积分10
11秒前
影像大侠完成签到,获得积分10
11秒前
852应助HYG采纳,获得30
12秒前
麦麦完成签到,获得积分10
12秒前
田様应助Isabel采纳,获得10
12秒前
gezid完成签到 ,获得积分10
12秒前
13秒前
13秒前
niu1发布了新的文献求助10
13秒前
Intro发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762