Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation

过度拟合 合成数据 计算机科学 水准点(测量) 人工智能 生成模型 机器学习 数据共享 图像合成 医学影像学 骨料(复合) 数据挖掘 图像(数学) 模式识别(心理学) 数据科学 生成语法 人工神经网络 医学 复合材料 病理 材料科学 替代医学 地理 大地测量学
作者
August DuMont Schütte,Jürgen Hetzel,Sergios Gatidis,Tobias Hepp,Benedikt Dietz,Stefan Bauer,Patrick Schwab
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:25
标识
DOI:10.1038/s41746-021-00507-3
摘要

Abstract Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages. We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real patient-level data in the right setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助乂贰ZERO叁采纳,获得10
刚刚
刚刚
2秒前
liuwenwen完成签到,获得积分10
2秒前
3秒前
科目三应助派大星采纳,获得30
5秒前
6秒前
可爱的函函应助Rita采纳,获得10
6秒前
6秒前
7秒前
yangcong发布了新的文献求助10
7秒前
yydragen应助学术渣渣采纳,获得30
12秒前
Muhammad发布了新的文献求助10
13秒前
yatou327完成签到,获得积分10
13秒前
15秒前
miao发布了新的文献求助10
15秒前
苏苏发布了新的文献求助10
16秒前
汉堡包应助学术混子采纳,获得10
18秒前
shimly0101xx发布了新的文献求助10
20秒前
阿珊完成签到,获得积分10
21秒前
Ki_Ayasato发布了新的文献求助150
22秒前
大模型应助北夏采纳,获得10
23秒前
cuber完成签到 ,获得积分10
24秒前
24秒前
XXJ发布了新的文献求助10
25秒前
科目三应助桀桀桀采纳,获得10
25秒前
shimly0101xx完成签到,获得积分10
27秒前
27秒前
Rondab应助好滴捏采纳,获得10
27秒前
泡泡鱼完成签到 ,获得积分10
28秒前
29秒前
30秒前
儒雅涵易完成签到 ,获得积分10
30秒前
31秒前
幽默的绣连完成签到,获得积分20
32秒前
Muhammad发布了新的文献求助10
33秒前
lzx发布了新的文献求助10
33秒前
congenialboy发布了新的文献求助10
33秒前
爆米花应助XXJ采纳,获得10
34秒前
张雯思发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176