Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation

过度拟合 合成数据 计算机科学 水准点(测量) 人工智能 生成模型 机器学习 数据共享 图像合成 医学影像学 骨料(复合) 数据挖掘 图像(数学) 模式识别(心理学) 数据科学 生成语法 人工神经网络 医学 材料科学 替代医学 大地测量学 病理 复合材料 地理
作者
August DuMont Schütte,Jürgen Hetzel,Sergios Gatidis,Tobias Hepp,Benedikt Dietz,Stefan Bauer,Patrick Schwab
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:25
标识
DOI:10.1038/s41746-021-00507-3
摘要

Abstract Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages. We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real patient-level data in the right setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的飞烟完成签到,获得积分10
2秒前
自由的尔蓉完成签到 ,获得积分10
2秒前
2秒前
吕大本事完成签到,获得积分10
3秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
langzfs完成签到,获得积分20
5秒前
情怀应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
老福贵儿应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得100
5秒前
华仔应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
qingmoheng应助科研通管家采纳,获得10
5秒前
妩媚的海应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
等天黑完成签到,获得积分10
6秒前
星星亮应助盖福鹤采纳,获得10
7秒前
nakl发布了新的文献求助10
8秒前
轩辕剑身完成签到,获得积分0
9秒前
痛失饭搭子完成签到 ,获得积分10
11秒前
书记完成签到,获得积分10
11秒前
豆觉子完成签到,获得积分10
11秒前
彭于晏应助HM采纳,获得10
12秒前
温暖的皮皮虾完成签到,获得积分10
14秒前
Lucas应助露露采纳,获得10
14秒前
15秒前
koukousang完成签到,获得积分10
19秒前
小白完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173