Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation

过度拟合 合成数据 计算机科学 水准点(测量) 人工智能 生成模型 机器学习 数据共享 图像合成 医学影像学 骨料(复合) 数据挖掘 图像(数学) 模式识别(心理学) 数据科学 生成语法 人工神经网络 医学 复合材料 病理 材料科学 替代医学 地理 大地测量学
作者
August DuMont Schütte,Jürgen Hetzel,Sergios Gatidis,Tobias Hepp,Benedikt Dietz,Stefan Bauer,Patrick Schwab
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:25
标识
DOI:10.1038/s41746-021-00507-3
摘要

Abstract Privacy concerns around sharing personally identifiable information are a major barrier to data sharing in medical research. In many cases, researchers have no interest in a particular individual’s information but rather aim to derive insights at the level of cohorts. Here, we utilise generative adversarial networks (GANs) to create medical imaging datasets consisting entirely of synthetic patient data. The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information. We assess the quality of synthetic data generated by two GAN models for chest radiographs with 14 radiology findings and brain computed tomography (CT) scans with six types of intracranial haemorrhages. We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset. We find that synthetic data performance disproportionately benefits from a reduced number of classes. Our benchmark also indicates that at low numbers of samples per class, label overfitting effects start to dominate GAN training. We conducted a reader study in which trained radiologists discriminate between synthetic and real images. In accordance with our benchmark results, the classification accuracy of radiologists improves with an increasing resolution. Our study offers valuable guidelines and outlines practical conditions under which insights derived from synthetic images are similar to those that would have been derived from real data. Our results indicate that synthetic data sharing may be an attractive alternative to sharing real patient-level data in the right setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吗喽小祁完成签到,获得积分10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
钟琪发布了新的文献求助10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
脑洞疼应助666JACS采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
顾矜应助网再快点采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得30
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
jie酱拌面应助科研通管家采纳,获得10
3秒前
asd_1发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
婷婷鸟发布了新的文献求助10
5秒前
追剧狂魔完成签到,获得积分20
5秒前
5秒前
WLWLW应助boluo采纳,获得30
5秒前
笑一个发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475