Vegetation phenology detection of deciduous broad-leaf forest using YOLOv3 from PhenoCam

物候学 每年落叶的 植被(病理学) 增强植被指数 环境科学 遥感 自然地理学 叶面积指数 归一化差异植被指数 生态学 地理 植被指数 生物 医学 病理
作者
Mengying Cao,Qinchuan Xin
标识
DOI:10.1109/icaie53562.2021.00061
摘要

Vegetation phenology identification is significance to the exploration of vegetation growth and is also conducive to the impact of phenology on the ecological environment. Recently, vegetation phenology detection is based on a time series of vegetation phenology to index simulation of vegetation growth time indirectly. In this study, we identify the vegetation phenology of deciduous broad-leaved forest through the deep learning method within a single PhenoCam image. The result of the phenology identification of growing regions, the accuracy MAP of daily identification in daily scales mAP up to 10.2%, which could identify the growing period of most deciduous broad-leaved forests. The identification accuracy mAP in the 8-day scale is up to 69%, and the identification mAP accuracy of vegetation could reach 98.2% when it was divided into four categories. The purpose of this study is to detect the phenological growth period of deciduous broad- leaved forest with rapid development, high precision, and fast deep learning methods. It has a great improvement on the current method of calculating the vegetation phenology period by using the traditional measurement and related mathematical and physical models. While obtaining the phenology period more quickly, it can automatically and accurately obtain the growth area and growth period of the study area, making a certain contribution to the study of vegetation phenology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jrlhappy发布了新的文献求助10
刚刚
华仔应助浮生采纳,获得10
2秒前
路内里发布了新的文献求助10
3秒前
3秒前
斯文败类应助himan采纳,获得10
3秒前
4秒前
笨笨甜瓜完成签到,获得积分20
6秒前
打打应助必胜客采纳,获得10
7秒前
8秒前
Phosphene应助去看海嘛采纳,获得10
8秒前
9秒前
科研通AI2S应助Yuan采纳,获得10
9秒前
端庄的白开水完成签到,获得积分10
9秒前
9秒前
善良宛筠发布了新的文献求助10
10秒前
himan完成签到,获得积分10
11秒前
12秒前
12秒前
星星发布了新的文献求助10
13秒前
神内打工人完成签到 ,获得积分10
14秒前
ref:rain完成签到,获得积分10
14秒前
科研通AI2S应助笨笨甜瓜采纳,获得10
14秒前
15秒前
HH完成签到,获得积分10
15秒前
FashionBoy应助不要引力采纳,获得10
16秒前
guyanlong发布了新的文献求助10
16秒前
韦以亦发布了新的文献求助10
17秒前
himan发布了新的文献求助10
17秒前
不许内耗完成签到,获得积分20
17秒前
18秒前
19秒前
那些年发布了新的文献求助10
19秒前
19秒前
科目三应助Yuan采纳,获得10
19秒前
星星完成签到,获得积分10
19秒前
20秒前
yufanhui应助不许内耗采纳,获得10
21秒前
虬江学者发布了新的文献求助10
23秒前
桐桐应助treelet007采纳,获得10
24秒前
24秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072205
求助须知:如何正确求助?哪些是违规求助? 2726027
关于积分的说明 7492250
捐赠科研通 2373536
什么是DOI,文献DOI怎么找? 1258633
科研通“疑难数据库(出版商)”最低求助积分说明 610333
版权声明 596952