Self-taught cross-domain few-shot learning with weakly supervised object localization and task-decomposition

判别式 任务(项目管理) 计算机科学 公制(单位) 人工智能 领域(数学分析) 对象(语法) 分解 集合(抽象数据类型) 模式识别(心理学) 机器学习 学习迁移 数学 生态学 经济 数学分析 生物 管理 程序设计语言 运营管理
作者
Xiyao Liu,Zhong Ji,Yanwei Pang,Zhi Han
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:265: 110358-110358 被引量:13
标识
DOI:10.1016/j.knosys.2023.110358
摘要

The shift between the source and target domains is the main challenge in cross-domain few-shot learning (CD-FSL) tasks. However, the target domain is unknown during training in the source domain, which results in a lack of directed guidance for target tasks. We observe that, owing to similar backgrounds in the target domains, self-labelled samples can be applied as prior tasks to transfer knowledge onto target tasks. Accordingly, we propose a task-expansion-decomposition framework for CD-FSL called the self-taught (ST) approach, which alleviates the problem of non-target guidance by constructing task-oriented metric spaces. Specifically, weakly supervised object localization (WSOL) and self-supervised technologies are employed to enrich task-oriented samples by exchanging and rotating discriminative regions, which generates a more abundant task set. Then, these tasks are decomposed into several tasks to complete few-shot recognition and rotation classification tasks. Transferring the source knowledge onto the target tasks and focusing on discriminative regions is beneficial to the task completion. We conducted extensive experiments under a cross-domain setting, including eight target domains: CUB, Cars, Places, Plantae, CropDieases, EuroSAT, ISIC, and ChestX. The experimental results demonstrate that the proposed ST approach is applicable to various metric-based models and provides promising improvements to CD-FSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
叶问儿完成签到,获得积分10
1秒前
1秒前
2秒前
yae完成签到,获得积分10
2秒前
小波发布了新的文献求助10
3秒前
小柒发布了新的文献求助10
3秒前
Ava应助wwx采纳,获得10
3秒前
SHAN发布了新的文献求助10
3秒前
西贝发布了新的文献求助10
4秒前
4秒前
4秒前
Naomi-yu发布了新的文献求助10
5秒前
烟花应助叶岐峰采纳,获得10
5秒前
晓晓来了发布了新的文献求助10
5秒前
滴滴发布了新的文献求助10
6秒前
曾经阁发布了新的文献求助10
7秒前
春秋发布了新的文献求助10
7秒前
7秒前
8秒前
华华发布了新的文献求助30
8秒前
好运不段女士完成签到 ,获得积分10
8秒前
8秒前
6yy完成签到,获得积分10
9秒前
章如豹发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
小艾完成签到,获得积分10
11秒前
一一应助swordlee采纳,获得30
11秒前
闲听花落发布了新的文献求助10
11秒前
拼搏愚志完成签到 ,获得积分10
11秒前
佟蓝血发布了新的文献求助10
11秒前
打打应助姚小包子采纳,获得20
12秒前
一一应助wwx采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543189
求助须知:如何正确求助?哪些是违规求助? 3120593
关于积分的说明 9343357
捐赠科研通 2818645
什么是DOI,文献DOI怎么找? 1549711
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076