Mathematical modeling of plaque progression and associated microenvironment: How far from predicting the fate of atherosclerosis?

计算模型 计算机科学 脆弱性(计算) 数学模型 神经科学 人工智能 生物 物理 计算机安全 量子力学
作者
Yan Cai,Zhiyong Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:211: 106435-106435
标识
DOI:10.1016/j.cmpb.2021.106435
摘要

• We summarize the current ‘state of the art’ on the mathematical modeling of the effects of biomechanical factors and microenvironmental factors on the plaque progression, and its potential help in prediction of plaque development. • We present an outlook on open problems and multiple challenges that require novel modelling techniques and more integrations with experimental and clinical investigations. Mathematical modeling contributes to pathophysiological research of atherosclerosis by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. In turn, the complexity of atherosclerosis is well suited to quantitative approaches as it provides challenges and opportunities for new developments of modeling. In this review, we summarize the current ‘state of the art’ on the mathematical modeling of the effects of biomechanical factors and microenvironmental factors on the plaque progression, and its potential help in prediction of plaque development. We begin with models that describe the biomechanical environment inside and outside the plaque and its influence on its growth and rupture. We then discuss mathematical models that describe the dynamic evolution of plaque microenvironmental factors, such as lipid deposition, inflammation, smooth muscle cells migration and intraplaque hemorrhage, followed by studies on plaque growth and progression using these modelling approaches. Moreover, we present several key questions for future research. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving plaque vulnerability and propose future potential direction in therapy for cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的小蝴蝶完成签到,获得积分10
刚刚
1秒前
拉长的成协完成签到,获得积分10
1秒前
1秒前
2秒前
汉堡包应助难得糊涂zq采纳,获得10
2秒前
2秒前
victor应助张凯采纳,获得10
2秒前
Tang125发布了新的文献求助10
2秒前
wfy发布了新的文献求助20
3秒前
不吃橘子发布了新的文献求助10
3秒前
rong发布了新的文献求助10
4秒前
guozizi发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
乂领域发布了新的文献求助10
5秒前
11111发布了新的文献求助10
6秒前
6秒前
6秒前
ZX0501完成签到,获得积分10
6秒前
6秒前
海东来应助ps2666采纳,获得30
7秒前
程爽发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
刘七岁完成签到,获得积分10
7秒前
愚林2024发布了新的文献求助10
8秒前
充电宝应助庸俗采纳,获得10
8秒前
Orange应助bcc666采纳,获得10
9秒前
Baneyhua发布了新的文献求助10
10秒前
iNk应助rong采纳,获得20
10秒前
英俊的铭应助斯文静竹采纳,获得10
10秒前
11秒前
11秒前
涛子11111发布了新的文献求助10
11秒前
友好傲白发布了新的文献求助10
12秒前
乐观大白菜真实的钥匙完成签到,获得积分10
12秒前
红豆发布了新的文献求助10
12秒前
爆米花应助SL采纳,获得10
12秒前
半夏完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406