A novel 1DCNN and domain adversarial transfer strategy for small sample GIS partial discharge pattern recognition

模式识别(心理学) 计算机科学 开关设备 样品(材料) 卷积神经网络 人工智能 领域(数学) 学习迁移 边界(拓扑) 数据挖掘 领域(数学分析) 机器学习 数学 工程类 数学分析 机械工程 化学 色谱法 纯数学
作者
Yanxin Wang,Jing Yan,Zhou Yang,Jianhua Wang,Yingsan Geng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (12): 125118-125118 被引量:23
标识
DOI:10.1088/1361-6501/ac27e8
摘要

Recently, convolutional neural networks (CNNs) have made certain achievements in gas-insulated switchgear (GIS) partial discharge (PD) pattern recognition. However, these methods rely on the availability of massive PD samples and how to apply the CNN constructed in the laboratory to the field GIS PD pattern recognition has become an urgent problem. To solve these problems, we propose a small sample GIS PD pattern recognition using one-dimensional CNN (1DCNN) and domain adversarial transfer learning (DATL). First, a novel 1DCNN is constructed to achieve high-accuracy classification using unbalanced samples, where the problem of traditional two-dimensional CNN's dependence on sample size is solved. Second, DATL is used to realize on-site GIS PD pattern recognition using small samples containing some unlabeled samples. In the domain adversarial training, two domain classifiers are introduced to align the domain of the decision boundary, which achieves a suitable features migration and accurate classification of target domains. Through the construction of multiple experiments, we verified that the proposed method achieves 98.67% and >92% recognition accuracy in the source domain and target domain, respectively. Compared with the existing methods, the proposed method can realize satisfactory pattern recognition, which can provide strong support for the subsequent pattern recognition of GIS PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助cwy采纳,获得10
刚刚
1秒前
1秒前
1秒前
研友_8DWD3Z发布了新的文献求助10
1秒前
Villanellel发布了新的文献求助10
1秒前
小薛发布了新的文献求助10
1秒前
1秒前
李爱国应助charry采纳,获得50
2秒前
2秒前
dou完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助灼灼夏采纳,获得10
3秒前
lqt636完成签到 ,获得积分10
3秒前
4秒前
shaun完成签到,获得积分10
4秒前
kingwill应助友好的小虾米采纳,获得20
4秒前
打打应助怀忑采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
6秒前
Villanellel完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
英俊的铭应助耍酷千山采纳,获得10
8秒前
8秒前
coollittlemouse完成签到,获得积分10
8秒前
8秒前
Alex发布了新的文献求助10
9秒前
9秒前
kilig应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542524
求助须知:如何正确求助?哪些是违规求助? 3119774
关于积分的说明 9340737
捐赠科研通 2817742
什么是DOI,文献DOI怎么找? 1549232
邀请新用户注册赠送积分活动 722060
科研通“疑难数据库(出版商)”最低求助积分说明 712928