A Cascaded Deep Learning–Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging

前列腺癌 人工智能 前列腺 医学 磁共振成像 深度学习 计算机科学 分割 前列腺活检 放射科 人工神经网络 核医学 模式识别(心理学) 算法 癌症 内科学
作者
Sherif Mehralivand,Dong Yang,Stephanie A. Harmon,Daguang Xu,Ziyue Xu,Holger R. Roth,Samira Masoudi,Thomas Sanford,Deepak Kesani,Nathan Lay,María J. Merino,Bradford J. Wood,Peter A. Pinto,Peter L. Choyke,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (8): 1159-1168 被引量:26
标识
DOI:10.1016/j.acra.2021.08.019
摘要

Prostate MRI improves detection of clinically significant prostate cancer; however, its diagnostic performance has wide variation. Artificial intelligence (AI) has the potential to assist radiologists in the detection and classification of prostatic lesions. Herein, we aimed to develop and test a cascaded deep learning detection and classification system trained on biparametric prostate MRI using PI-RADS for assisting radiologists during prostate MRI read out.T2-weighted, diffusion-weighted (ADC maps, high b value DWI) MRI scans obtained at 3 Tesla from two institutions (n = 1043 in-house and n = 347 Prostate-X, respectively) acquired between 2015 to 2019 were used for model training, validation, testing. All scans were retrospectively reevaluated by one radiologist. Suspicious lesions were contoured and assigned a PI-RADS category. A 3D U-Net-based deep neural network was used to train an algorithm for automated detection and segmentation of prostate MRI lesions. Two 3D residual neural network were used for a 4-class classification task to predict PI-RADS categories 2 to 5 and BPH. Training and validation used 89% (n = 1290 scans) of the data using 5 fold cross-validation, the remaining 11% (n = 150 scans) were used for independent testing. Algorithm performance at lesion level was assessed using sensitivities, positive predictive values (PPV), false discovery rates (FDR), classification accuracy, Dice similarity coefficient (DSC). Additional analysis was conducted to compare AI algorithm's lesion detection performance with targeted biopsy results.Median age was 66 years (IQR = 60-71), PSA 6.7 ng/ml (IQR = 4.7-9.9) from in-house cohort. In the independent test set, algorithm correctly detected 111 of 198 lesions leading to 56.1% (49.3%-62.6%) sensitivity. PPV was 62.7% (95% CI 54.7%-70.7%) with FDR of 37.3% (95% CI 29.3%-45.3%). Of 79 true positive lesions, 82.3% were tumor positive at targeted biopsy, whereas of 57 false negative lesions, 50.9% were benign at targeted biopsy. Median DSC for lesion segmentation was 0.359. Overall PI-RADS classification accuracy was 30.8% (95% CI 24.6%-37.8%).Our cascaded U-Net, residual network architecture can detect, classify cancer suspicious lesions at prostate MRI with good detection, reasonable classification performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热果汁应助凶狠的白桃采纳,获得10
刚刚
ww应助凶狠的白桃采纳,获得10
刚刚
炙热果汁应助凶狠的白桃采纳,获得10
刚刚
御风发布了新的文献求助10
1秒前
Mr兔仙森发布了新的文献求助10
2秒前
zho应助文艺乐蕊采纳,获得10
2秒前
pluto应助王雅宝采纳,获得10
2秒前
初见完成签到,获得积分20
3秒前
sammy完成签到 ,获得积分10
3秒前
大个应助偏执采纳,获得10
4秒前
欣喜的不惜完成签到,获得积分10
5秒前
5秒前
6秒前
初见发布了新的文献求助10
6秒前
6秒前
默默的巧荷完成签到,获得积分10
8秒前
apt应助Yang采纳,获得10
9秒前
半夏完成签到 ,获得积分10
10秒前
可莉不想出去玩完成签到,获得积分20
11秒前
禾沐发布了新的文献求助10
12秒前
称心寒松发布了新的文献求助10
12秒前
倔强的大萝卜完成签到,获得积分0
12秒前
13秒前
13秒前
14秒前
14秒前
15秒前
科研通AI5应助lqh0211采纳,获得10
15秒前
香菜皮蛋完成签到 ,获得积分10
17秒前
田様应助YIWENNN采纳,获得10
17秒前
无法发布了新的文献求助10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
迷路的幻灵关注了科研通微信公众号
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
现代期待发布了新的文献求助10
18秒前
大模型应助科研通管家采纳,获得30
19秒前
华仔应助科研通管家采纳,获得10
19秒前
咕咕咕发布了新的文献求助10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427