MGSTCN: A Multi-Graph Spatio-Temporal Convolutional Network for Metro Passenger Flow Prediction

计算机科学 卷积神经网络 图形 特征(语言学) 构造(python库) 数据挖掘 人工智能 理论计算机科学 计算机网络 语言学 哲学
作者
Jiahao Yang,Tong Liu,Chengfan Li,Weiqin Tong,Yanmin Zhu,Wenwei Ai
标识
DOI:10.1109/bigcom53800.2021.00050
摘要

Short-term passenger flow forecasting is significantly important in the urban rail transit system. However, there are many factors that affect passenger flows, and traditional statistical prediction methods are unable to model these complex factors comprehensively. Emerging deep learning models have become effective methods to overcome this problem. In this study, we propose a new deep learning model MGSTCN (Multi-Graph Spatio-Temporal Convolutional Network) to predict short-term passenger flows for all stations in an urban subway network. Specifically, MGSTCN is composed of three modules with the same structure, which models the temporal dependencies of passenger flows in three different time scales, i.e., recent, daily and weekly periods respectively. Each module contains three main components: a multi-graph convolutional layer, a feature fusion layer, and a recurrent neural network. In addition, we construct three topological graphs based on the subway network, station attributes, and passenger flow trends, to extract spatial features from different perspectives through graph convolutional networks. Besides, we also employ some external factors such as weather conditions and holidays to enhance the forecasting accuracy of our proposed model. We conduct experiments based on two real-world passenger flow datasets in Shanghai and Hangzhou, respectively. The results show that our proposed model has superior performance compared to the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助Lois_woo采纳,获得10
1秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
布鲁鲁完成签到,获得积分10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
豆子应助科研通管家采纳,获得20
3秒前
碧蓝的睫毛完成签到,获得积分10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
NPC应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
不钓鱼应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
NPC应助科研通管家采纳,获得10
3秒前
刘婷婷完成签到 ,获得积分10
3秒前
4秒前
4秒前
思源应助Ann采纳,获得10
4秒前
5秒前
祯果粒发布了新的文献求助20
5秒前
6秒前
klio完成签到 ,获得积分10
6秒前
6秒前
xiaoxia完成签到,获得积分10
6秒前
打打应助LaoLuo采纳,获得10
6秒前
小博士328完成签到,获得积分10
7秒前
没有花活儿完成签到,获得积分10
7秒前
huco发布了新的文献求助10
7秒前
7秒前
小严完成签到 ,获得积分10
8秒前
芋圆脑袋完成签到,获得积分10
9秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076615
求助须知:如何正确求助?哪些是违规求助? 2729583
关于积分的说明 7509104
捐赠科研通 2377778
什么是DOI,文献DOI怎么找? 1260780
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203