MGSTCN: A Multi-Graph Spatio-Temporal Convolutional Network for Metro Passenger Flow Prediction

计算机科学 卷积神经网络 图形 特征(语言学) 构造(python库) 数据挖掘 人工智能 理论计算机科学 计算机网络 语言学 哲学
作者
Jiahao Yang,Tong Liu,Chengfan Li,Weiqin Tong,Yanmin Zhu,Wenwei Ai
标识
DOI:10.1109/bigcom53800.2021.00050
摘要

Short-term passenger flow forecasting is significantly important in the urban rail transit system. However, there are many factors that affect passenger flows, and traditional statistical prediction methods are unable to model these complex factors comprehensively. Emerging deep learning models have become effective methods to overcome this problem. In this study, we propose a new deep learning model MGSTCN (Multi-Graph Spatio-Temporal Convolutional Network) to predict short-term passenger flows for all stations in an urban subway network. Specifically, MGSTCN is composed of three modules with the same structure, which models the temporal dependencies of passenger flows in three different time scales, i.e., recent, daily and weekly periods respectively. Each module contains three main components: a multi-graph convolutional layer, a feature fusion layer, and a recurrent neural network. In addition, we construct three topological graphs based on the subway network, station attributes, and passenger flow trends, to extract spatial features from different perspectives through graph convolutional networks. Besides, we also employ some external factors such as weather conditions and holidays to enhance the forecasting accuracy of our proposed model. We conduct experiments based on two real-world passenger flow datasets in Shanghai and Hangzhou, respectively. The results show that our proposed model has superior performance compared to the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耳东完成签到,获得积分20
1秒前
嗯哼完成签到,获得积分10
2秒前
2秒前
federish完成签到 ,获得积分10
3秒前
Majin发布了新的文献求助10
4秒前
4秒前
Camille发布了新的文献求助10
5秒前
天天快乐应助美丽的颜演采纳,获得10
5秒前
BillowHu完成签到,获得积分10
5秒前
Young发布了新的文献求助10
6秒前
林中路完成签到,获得积分20
7秒前
zoe发布了新的文献求助10
7秒前
8秒前
BillowHu发布了新的文献求助10
9秒前
9秒前
Lucas应助光亮的思柔采纳,获得10
10秒前
11秒前
羊羊爱吃羊羊完成签到 ,获得积分10
12秒前
Owen应助emeqwq采纳,获得10
12秒前
14秒前
MYY发布了新的文献求助10
14秒前
wanci应助林中路采纳,获得10
15秒前
1231发布了新的文献求助10
15秒前
16秒前
年少丶发布了新的文献求助10
16秒前
xiaofeiyan发布了新的文献求助20
16秒前
Lucas应助独孤妖月采纳,获得30
16秒前
Camille完成签到,获得积分10
16秒前
标致的蛋挞完成签到,获得积分20
16秒前
PAD发布了新的文献求助30
17秒前
大模型应助tian翼采纳,获得30
18秒前
gbw123完成签到,获得积分10
19秒前
识途发布了新的文献求助10
19秒前
小二郎应助与山采纳,获得10
19秒前
20秒前
咕咕咕完成签到,获得积分10
20秒前
筋筋子完成签到 ,获得积分10
21秒前
21秒前
小李完成签到 ,获得积分10
22秒前
Rondab应助大胆睫毛膏采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971441
求助须知:如何正确求助?哪些是违规求助? 3516161
关于积分的说明 11181180
捐赠科研通 3251322
什么是DOI,文献DOI怎么找? 1795788
邀请新用户注册赠送积分活动 876026
科研通“疑难数据库(出版商)”最低求助积分说明 805228