化学
反应性(心理学)
吸附
金属有机骨架
金属
配体(生物化学)
水溶液中的金属离子
离子交换
无机化学
化学吸附
红外光谱学
傅里叶变换红外光谱
立体化学
离子
物理化学
有机化学
化学工程
受体
生物化学
病理
替代医学
工程类
医学
作者
Caitlin E. Bien,Zhongzheng Cai,Casey R. Wade
出处
期刊:Inorganic Chemistry
[American Chemical Society]
日期:2021-06-29
卷期号:60 (16): 11784-11794
被引量:11
标识
DOI:10.1021/acs.inorgchem.1c01077
摘要
Postsynthetic modification methods have emerged as indispensable tools for tuning the properties and reactivity of metal–organic frameworks (MOFs). In particular, postsynthetic X-type ligand exchange (PXLE) at metal building units has gained increasing attention as a means of immobilizing guest species, modulating the reactivity of framework metal ions, and introducing new functional groups. The reaction of a Zn–OH functionalized analogue of CFA-1 (1-OH, Zn(ZnOH)4(bibta)3, where bibta2– = 5,5′-bibenzotriazolate) with organic substrates containing mildly acidic E–H groups (E = C, O, N) results in the formation of Zn–E species and water as a byproduct. This Brønsted acid–base PXLE reaction is compatible with substrates with pKa(DMSO) values as high as 30 and offers a rapid and convenient means of introducing new functional groups at Kuratwoski-type metal nodes. Gas adsorption and diffuse reflectance infrared Fourier transform spectroscopy experiments reveal that the anilide-exchanged MOFs 1-NHPh0.9 and 1-NHPh2.5 exhibit enhanced low-pressure CO2 adsorption compared to 1-OH as a result of a Zn–NHPh + CO2 ⇌ Zn–O2CNHPh chemisorption mechanism. The MFU-4l analogue 2-NHPh ([Zn5(OH)2.1(NHPh)1.9(btdd)3], where btdd2– = bis(1,2,3-triazolo)dibenzodioxin), shows a similar improvement in CO2 adsorption in comparison to the parent MOF containing only Zn–OH groups.
科研通智能强力驱动
Strongly Powered by AbleSci AI