Measurement Error in Longitudinal Data

背景(考古学) 数据收集 不完美的 计算机科学 数据科学 观测误差 计量经济学 项目反应理论 统计 心理学 地理 数学 心理测量学 语言学 哲学 考古
出处
期刊:Oxford University Press eBooks [Oxford University Press]
被引量:15
标识
DOI:10.1093/oso/9780198859987.001.0001
摘要

Abstract Understanding change is essential in most scientific fields. This is highlighted by the importance of issues such as shifts in public health and changes in public opinion regarding politicians and policies. Nevertheless, our measurements of the world around us are often imperfect. For example, measurements of attitudes might be biased by social desirability, while estimates of health may be marred by low sensitivity and specificity. In this book we tackle the important issue of how to understand and estimate change in the context of data that are imperfect and exhibit measurement error. The book brings together the latest advances in the area of estimating change in the presence of measurement error from a number of different fields, such as survey methodology, sociology, psychology, statistics, and health. Furthermore, it covers the entire process, from the best ways of collecting longitudinal data, to statistical models to estimate change under uncertainty, to examples of researchers applying these methods in the real world. The book introduces the reader to essential issues of longitudinal data collection such as memory effects, panel conditioning (or mere measurement effects), the use of administrative data, and the collection of multi-mode longitudinal data. It also introduces the reader to some of the most important models used in this area, including quasi-simplex models, latent growth models, latent Markov chains, and equivalence/DIF testing. Further, it discusses the use of vignettes in the context of longitudinal data and estimation methods for multilevel models of change in the presence of measurement error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SDSD发布了新的文献求助10
1秒前
hyw010724发布了新的文献求助30
2秒前
陈小白发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
动听的飞松完成签到 ,获得积分10
6秒前
FashionBoy应助我喜欢的毛驴采纳,获得10
6秒前
HJM应助kk采纳,获得10
8秒前
晨沭完成签到,获得积分10
8秒前
深情白风完成签到,获得积分10
9秒前
WSH发布了新的文献求助10
9秒前
随遇而安完成签到,获得积分10
11秒前
小巧的远望完成签到 ,获得积分20
12秒前
8y24dp发布了新的文献求助10
14秒前
14秒前
licheng完成签到,获得积分10
15秒前
WSH完成签到,获得积分10
15秒前
16秒前
17秒前
漓汐完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
Jello完成签到,获得积分10
18秒前
落后海白完成签到,获得积分10
19秒前
tuanheqi应助派大星采纳,获得30
21秒前
Ava应助8y24dp采纳,获得10
21秒前
22秒前
漓汐发布了新的文献求助10
22秒前
大个应助淺沫初晴采纳,获得10
23秒前
稚于驳回了ding应助
23秒前
summer发布了新的文献求助10
23秒前
coco完成签到,获得积分10
24秒前
布丁完成签到,获得积分10
25秒前
上官若男应助惠嘟嘟采纳,获得10
26秒前
26秒前
27秒前
Moon完成签到 ,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292496
求助须知:如何正确求助?哪些是违规求助? 2928822
关于积分的说明 8438538
捐赠科研通 2600907
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642921