Performance of 2-bromoterephthalic acid passivated all-inorganic perovskite cells

钝化 钙钛矿(结构) 能量转换效率 材料科学 卤化物 光致发光 带隙 微观结构 相(物质) 扫描电子显微镜 化学工程 分析化学(期刊) 无机化学 图层(电子) 纳米技术 化学 结晶学 光电子学 冶金 有机化学 复合材料 工程类
作者
Mingyue Lin,Bo Ju,Yan Li,Xuelian Chen
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:70 (12): 128803-128803 被引量:3
标识
DOI:10.7498/aps.70.20202005
摘要

All-inorganic perovskite cesium lead iodine (CsPbI<sub>3</sub>) without any volatile organic components has attracted much attention due to its superior stability, high absorption efficiency and suitable band gap. However, the power-conversion efficiencies of CsPbI<sub>3</sub> based perovskite solar cells (PSCs) are substantially low compared with those of the organic-inorganic hybrid lead halide PSCs. The surface passivation of the CsPbI<sub>3</sub> film by long-chain halide salts has been found to be an effective method of improving the performance. In this paper, we report the concentration effect of an inexpensive 2-bromoterephthalic acid (BBr) as passivation material on the performance of CsPbI<sub>3</sub> perovskite solar cells. The experimental results show that the conversion efficiency of perovskite solar cells first increases and then decreases as the concentration of BBr increases from 0 to 2 mg/mL. The best conversion efficiency of CsPbI<sub>3</sub> perovskite solar cells reaches 13.5% at 0.2 mg/mL BBr. The results from X-ray diffraction and scanning electron microscopy suggest that there is no change in the phase or microstructure of the CsPbI<sub>3</sub> perovskite film after surface passivation by BBr. By further analyzing the photoluminescence data of the CsPbI<sub>3</sub> film with and without capping hole transport layer, it can be found that the passivation of BBr with the concentration of 0.2 mg/mL can enhance the fluorescence excitation intensity of the CsPbI<sub>3</sub> film and accelerate the exciton separation at the interface between CsPbI<sub>3</sub> film and hole transport layer. Based on the electrochemical impedance spectroscopy data, we find that the electron transport ability at the interface between TiO<sub>2</sub> and CsPbI<sub>3</sub> can be significantly improved after surface passivation, which is induced by the acceleration of the exciton separation at the interface between CsPbI<sub>3</sub> film and hole transport layer. The decrease of the PSCs performance when the concentration of the BBr precursor increases from 0.5 mg/mL to 2 mg/mL can be attributed to the local agglomeration of the BBr material, resulting in the block of charge transportation. This research is expected to provide basic support for the low-cost development of the passivation materials for perovskite solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋若风完成签到,获得积分10
刚刚
英姑应助每天都想下班采纳,获得10
1秒前
shooin完成签到,获得积分10
1秒前
佳佳发布了新的文献求助10
1秒前
MADKAI发布了新的文献求助10
1秒前
lin完成签到,获得积分20
2秒前
思源应助科研民工采纳,获得10
2秒前
忧郁凌波完成签到,获得积分10
2秒前
姜姜姜完成签到 ,获得积分10
3秒前
凶狠的绿兰完成签到,获得积分10
4秒前
多多少少忖测的情完成签到,获得积分10
4秒前
科研通AI5应助兴奋的宛白采纳,获得10
5秒前
6秒前
zhanlonglsj发布了新的文献求助10
6秒前
6秒前
芍药完成签到,获得积分10
6秒前
Yogita完成签到,获得积分10
7秒前
DoctorYan完成签到,获得积分10
7秒前
Adler完成签到,获得积分10
7秒前
8秒前
坐宝马吃地瓜完成签到 ,获得积分10
8秒前
SciGPT应助Strike采纳,获得10
8秒前
自强不息完成签到,获得积分10
8秒前
9秒前
czq发布了新的文献求助30
9秒前
望春风完成签到,获得积分10
9秒前
9秒前
huangJP完成签到,获得积分10
10秒前
情怀应助Tira采纳,获得10
10秒前
王阳洋完成签到,获得积分10
10秒前
10秒前
11秒前
通~发布了新的文献求助10
11秒前
李爱国应助非常可爱采纳,获得20
11秒前
11秒前
12秒前
阿敏发布了新的文献求助10
13秒前
JamesPei应助小憩采纳,获得10
13秒前
jkhjkhj发布了新的文献求助10
13秒前
风中香之发布了新的文献求助30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740