Performance Analysis of Deep Learning Classification for Agriculture Applications Using Sentinel-2 Data

计算机科学 人工智能
作者
Gurwinder Singh,Ganesh Kumar Sethi,Sartajvir Singh
出处
期刊:Communications in computer and information science 卷期号:: 205-213 被引量:7
标识
DOI:10.1007/978-981-16-3660-8_19
摘要

North Indian states are largely covered with agricultural land which plays an important role in nation’s economy development. Remote sensing offers a cost-effective and efficient solution for sustainable monitoring and mapping of agricultural land. In past, various classification algorithms were developed and implemented for agriculture applications. But the conventional techniques are generally based on machine learning algorithms which are easy to implement but at the same time require human intervention on decision making. Nowadays, deep learning algorithms are becoming more popular due to the presence of trained models and one-time processing. However, the deep learning model required a large amount of computation time and needs to be tested in different regions for different applications. In the present work, the deep learning algorithm has been tested over agricultural land (over a part of Punjab state, India) using Sentinel-2 imagery. The major classes considered in the present analysis are vegetation area, water, and buildup area. For validation purposes, output classified maps are compared with reference datasets which were acquired from field observations for some points. The statistical results have shown that more than 80% of accuracy has been obtained using a deep learning algorithm. This study has many applications in the monitoring and mapping of land use land cover regions using a deep learning algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧的从雪完成签到 ,获得积分10
2秒前
安详的语蕊完成签到,获得积分10
5秒前
淡然的剑通完成签到 ,获得积分10
6秒前
Holly完成签到,获得积分10
8秒前
科研王子完成签到,获得积分10
8秒前
宇文雨文给宇文雨文的求助进行了留言
10秒前
Ly完成签到 ,获得积分10
13秒前
23完成签到,获得积分10
15秒前
PHI完成签到 ,获得积分10
16秒前
叶未晞yi完成签到,获得积分10
18秒前
drjyang完成签到,获得积分10
22秒前
26秒前
乔巴完成签到 ,获得积分10
28秒前
正直冰露完成签到 ,获得积分10
29秒前
十月天秤完成签到,获得积分10
32秒前
33秒前
香蕉觅云应助宇文雨文采纳,获得30
35秒前
健壮惋清完成签到 ,获得积分10
35秒前
zhangguo完成签到 ,获得积分10
35秒前
HHM完成签到,获得积分10
36秒前
lalala完成签到 ,获得积分10
38秒前
细心的安双完成签到 ,获得积分10
38秒前
宋芽芽u发布了新的文献求助10
39秒前
pK完成签到 ,获得积分10
39秒前
群青完成签到 ,获得积分10
42秒前
叶子完成签到,获得积分10
43秒前
45秒前
ZDM6094完成签到 ,获得积分10
46秒前
叶子完成签到,获得积分10
46秒前
46秒前
杨涵完成签到 ,获得积分10
49秒前
小龙发布了新的文献求助10
51秒前
SCI完成签到 ,获得积分10
54秒前
雨寒完成签到 ,获得积分10
56秒前
糊糊完成签到 ,获得积分10
57秒前
小龙完成签到,获得积分10
1分钟前
Tom完成签到,获得积分10
1分钟前
1分钟前
byby完成签到,获得积分10
1分钟前
小超人完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517