Performance Analysis of Deep Learning Classification for Agriculture Applications Using Sentinel-2 Data

计算机科学 人工智能
作者
Gurwinder Singh,Ganesh Kumar Sethi,Sartajvir Singh
出处
期刊:Communications in computer and information science 卷期号:: 205-213 被引量:7
标识
DOI:10.1007/978-981-16-3660-8_19
摘要

North Indian states are largely covered with agricultural land which plays an important role in nation’s economy development. Remote sensing offers a cost-effective and efficient solution for sustainable monitoring and mapping of agricultural land. In past, various classification algorithms were developed and implemented for agriculture applications. But the conventional techniques are generally based on machine learning algorithms which are easy to implement but at the same time require human intervention on decision making. Nowadays, deep learning algorithms are becoming more popular due to the presence of trained models and one-time processing. However, the deep learning model required a large amount of computation time and needs to be tested in different regions for different applications. In the present work, the deep learning algorithm has been tested over agricultural land (over a part of Punjab state, India) using Sentinel-2 imagery. The major classes considered in the present analysis are vegetation area, water, and buildup area. For validation purposes, output classified maps are compared with reference datasets which were acquired from field observations for some points. The statistical results have shown that more than 80% of accuracy has been obtained using a deep learning algorithm. This study has many applications in the monitoring and mapping of land use land cover regions using a deep learning algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzz发布了新的文献求助10
2秒前
ding应助xiyan采纳,获得10
2秒前
duduguai发布了新的文献求助10
3秒前
cc发布了新的文献求助10
3秒前
JYZ发布了新的文献求助10
4秒前
烟花应助超级的煎饼采纳,获得10
4秒前
共享精神应助可爱的怀绿采纳,获得10
4秒前
4秒前
xs发布了新的文献求助10
4秒前
张颖发布了新的文献求助10
4秒前
魔幻慕灵发布了新的文献求助10
4秒前
4秒前
田様应助101采纳,获得30
5秒前
mmmio应助大气早晨采纳,获得10
7秒前
7秒前
wf0806发布了新的文献求助10
7秒前
zzzzz完成签到,获得积分10
8秒前
9秒前
9秒前
心灵美盼烟完成签到,获得积分10
10秒前
羞涩的绿草完成签到,获得积分10
11秒前
wqq发布了新的文献求助10
11秒前
美满的曼寒完成签到,获得积分10
12秒前
思思思发布了新的文献求助10
13秒前
科目三应助小满采纳,获得10
13秒前
上官若男应助辛勤雨泽采纳,获得10
13秒前
14秒前
wdd发布了新的文献求助10
14秒前
姜颖完成签到,获得积分10
14秒前
科研通AI2S应助海绵采纳,获得10
15秒前
xiyan发布了新的文献求助10
15秒前
pcr163应助javascript采纳,获得50
16秒前
17秒前
18秒前
101发布了新的文献求助30
19秒前
852应助无辜的惜寒采纳,获得10
20秒前
听说发布了新的文献求助10
20秒前
20秒前
20秒前
慕青应助呆萌雪晴采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608788
求助须知:如何正确求助?哪些是违规求助? 4015227
关于积分的说明 12432502
捐赠科研通 3696489
什么是DOI,文献DOI怎么找? 2038043
邀请新用户注册赠送积分活动 1071144
科研通“疑难数据库(出版商)”最低求助积分说明 955017