清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance Analysis of Deep Learning Classification for Agriculture Applications Using Sentinel-2 Data

计算机科学 人工智能
作者
Gurwinder Singh,Ganesh Kumar Sethi,Sartajvir Singh
出处
期刊:Communications in computer and information science 卷期号:: 205-213 被引量:7
标识
DOI:10.1007/978-981-16-3660-8_19
摘要

North Indian states are largely covered with agricultural land which plays an important role in nation’s economy development. Remote sensing offers a cost-effective and efficient solution for sustainable monitoring and mapping of agricultural land. In past, various classification algorithms were developed and implemented for agriculture applications. But the conventional techniques are generally based on machine learning algorithms which are easy to implement but at the same time require human intervention on decision making. Nowadays, deep learning algorithms are becoming more popular due to the presence of trained models and one-time processing. However, the deep learning model required a large amount of computation time and needs to be tested in different regions for different applications. In the present work, the deep learning algorithm has been tested over agricultural land (over a part of Punjab state, India) using Sentinel-2 imagery. The major classes considered in the present analysis are vegetation area, water, and buildup area. For validation purposes, output classified maps are compared with reference datasets which were acquired from field observations for some points. The statistical results have shown that more than 80% of accuracy has been obtained using a deep learning algorithm. This study has many applications in the monitoring and mapping of land use land cover regions using a deep learning algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica完成签到,获得积分10
5秒前
葡萄成熟时完成签到 ,获得积分10
25秒前
酷炫抽屉完成签到 ,获得积分10
32秒前
39秒前
43秒前
TOUHOUU完成签到 ,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
2分钟前
2分钟前
Gryff完成签到 ,获得积分10
2分钟前
D調完成签到,获得积分10
3分钟前
高高天亦完成签到 ,获得积分10
3分钟前
王一一完成签到,获得积分10
3分钟前
忆茶戏完成签到 ,获得积分10
3分钟前
silence完成签到 ,获得积分10
3分钟前
彭于晏应助迷你的心情采纳,获得10
4分钟前
furin001完成签到,获得积分10
4分钟前
可可完成签到,获得积分20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
4分钟前
CipherSage应助lalalapa666采纳,获得10
4分钟前
4分钟前
4分钟前
lenne完成签到,获得积分10
4分钟前
4分钟前
2041完成签到,获得积分10
5分钟前
5分钟前
punyunyung发布了新的文献求助10
5分钟前
Aaernan完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
lalalapa666发布了新的文献求助10
5分钟前
punyunyung完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
哈哈哈发布了新的文献求助10
6分钟前
峪山洛完成签到 ,获得积分10
6分钟前
科研通AI6应助lalalapa666采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368111
求助须知:如何正确求助?哪些是违规求助? 4496093
关于积分的说明 13996572
捐赠科研通 4401141
什么是DOI,文献DOI怎么找? 2417649
邀请新用户注册赠送积分活动 1410396
关于科研通互助平台的介绍 1386076