数学
塔克分解
多线性映射
插值(计算机图形学)
切比雪夫滤波器
单变量
二元分析
张量积
分解
应用数学
近似理论
功能(生物学)
函数逼近
数学优化
切比雪夫节点
算法
计算机科学
数学分析
张量分解
多元统计
统计
纯数学
人工智能
生物
运动(物理)
进化生物学
人工神经网络
生态学
作者
Sergey Dolgov,Daniel Kressner,Christoph Strössner
摘要
This work is concerned with approximating a trivariate function defined on a tensor-product domain via function evaluations. Combining tensorized Chebyshev interpolation with a Tucker decomposition of low multilinear rank yields function approximations that can be computed and stored very efficiently. The existing Chebfun3 algorithm [Hashemi and Trefethen, SIAM J. Sci. Comput., 39 (2017)]uses a similar format but the construction of the approximation proceeds indirectly, via a so called slice-Tucker decomposition. As a consequence, Chebfun3 sometimes uses unnecessarily many function evaluations and does not fully benefit from the potential of the Tucker decomposition to reduce, sometimes dramatically, the computational cost. We propose a novel algorithm Chebfun3F that utilizes univariate fibers instead of bivariate slices to construct the Tucker decomposition. Chebfun3F reduces the cost for the approximation in terms of the number of function evaluations for nearly all functions considered, typically by 75%, and sometimes by over 98%.
科研通智能强力驱动
Strongly Powered by AbleSci AI