Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility

自回归积分移动平均 计算机科学 人工神经网络 粒子群优化 均方误差 回声状态网络 自回归模型 股票市场 多层感知器 波动性(金融) 时间序列 人工智能 计量经济学 机器学习 循环神经网络 统计 数学 古生物学 生物
作者
Gabriel Trierweiler Ribeiro,André Alves Portela Santos,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115490-115490 被引量:95
标识
DOI:10.1016/j.eswa.2021.115490
摘要

The prediction of stock price return volatilities is important for financial companies and investors to help to measure and managing market risk and to support financial decision-making. The literature points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) specification - which attempt to forecast realized volatilities accurately. However, recent variants of artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network based on the reservoir computing paradigm, have the potential for improving time series prediction. This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN, in forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an average mean squared error of 5.78 × 10−8, 5.78 × 10−8, and 1.16 × 10−7, for 1, 5, and 21 days ahead on the test set, respectively. The improvement is statistically significant with an average rank of 1.44 considering the three different datasets and forecasting horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赛因斯完成签到,获得积分10
1秒前
1秒前
2秒前
罗兰小云发布了新的文献求助20
2秒前
123发布了新的文献求助10
3秒前
3秒前
JamesPei应助欣欣采纳,获得10
6秒前
Lucas应助dengdengdeng采纳,获得10
6秒前
相金鹏发布了新的文献求助10
8秒前
孙冬晨完成签到,获得积分10
8秒前
scvrl完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
morry5007完成签到,获得积分10
9秒前
10秒前
落后的小松鼠完成签到,获得积分10
10秒前
白加爽完成签到 ,获得积分10
11秒前
Baron发布了新的文献求助10
12秒前
刘勤杰发布了新的文献求助10
12秒前
杨小鸿发布了新的文献求助10
13秒前
12完成签到,获得积分10
14秒前
机灵的萝莉完成签到 ,获得积分20
15秒前
超级涔雨完成签到,获得积分10
15秒前
花生完成签到,获得积分10
17秒前
ccds发布了新的文献求助10
17秒前
xzy998应助深情的晓夏采纳,获得30
18秒前
hh完成签到 ,获得积分10
20秒前
20秒前
顾矜应助shenlee采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
111完成签到,获得积分10
22秒前
23秒前
23秒前
科研通AI2S应助xh采纳,获得10
24秒前
明风完成签到 ,获得积分10
24秒前
CipherSage应助ccds采纳,获得10
25秒前
25秒前
淡定的幻枫完成签到 ,获得积分10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093