Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility

自回归积分移动平均 计算机科学 人工神经网络 粒子群优化 均方误差 回声状态网络 自回归模型 股票市场 多层感知器 波动性(金融) 时间序列 人工智能 计量经济学 机器学习 循环神经网络 统计 数学 古生物学 生物
作者
Gabriel Trierweiler Ribeiro,André Alves Portela Santos,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:184: 115490-115490 被引量:78
标识
DOI:10.1016/j.eswa.2021.115490
摘要

The prediction of stock price return volatilities is important for financial companies and investors to help to measure and managing market risk and to support financial decision-making. The literature points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) specification - which attempt to forecast realized volatilities accurately. However, recent variants of artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network based on the reservoir computing paradigm, have the potential for improving time series prediction. This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN, in forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an average mean squared error of 5.78 × 10−8, 5.78 × 10−8, and 1.16 × 10−7, for 1, 5, and 21 days ahead on the test set, respectively. The improvement is statistically significant with an average rank of 1.44 considering the three different datasets and forecasting horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王木兮完成签到,获得积分10
1秒前
小二郎应助jingnanlyu采纳,获得10
1秒前
婷婷完成签到,获得积分10
1秒前
仲夏完成签到,获得积分10
1秒前
2秒前
汤圆发布了新的文献求助10
3秒前
3秒前
争取不秃顶的医学僧完成签到,获得积分10
4秒前
盼盼527发布了新的文献求助10
4秒前
天真的雨完成签到,获得积分10
5秒前
仲夏发布了新的文献求助10
5秒前
在水一方应助维维采纳,获得10
7秒前
xiying发布了新的文献求助10
7秒前
DDL消失发布了新的文献求助10
8秒前
可爱的函函应助加快步伐采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
寒冷小鸭子完成签到,获得积分10
10秒前
LaFee完成签到,获得积分10
10秒前
打打应助小稻草人采纳,获得30
11秒前
12秒前
落花怨蝶发布了新的文献求助10
13秒前
13秒前
风趣安青发布了新的文献求助20
13秒前
所所应助mango_采纳,获得10
14秒前
自信秋烟完成签到 ,获得积分10
14秒前
yn发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
17秒前
18秒前
李健的小迷弟应助dahao采纳,获得10
18秒前
研友_nxer7Z发布了新的文献求助10
19秒前
slin_sjtu发布了新的文献求助10
20秒前
wml发布了新的文献求助10
21秒前
加快步伐发布了新的文献求助10
22秒前
往返自然完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952600
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090076
捐赠科研通 3228597
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344