Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility

自回归积分移动平均 计算机科学 人工神经网络 粒子群优化 均方误差 回声状态网络 自回归模型 股票市场 多层感知器 波动性(金融) 时间序列 人工智能 计量经济学 机器学习 循环神经网络 统计 数学 古生物学 生物
作者
Gabriel Trierweiler Ribeiro,André Alves Portela Santos,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115490-115490 被引量:95
标识
DOI:10.1016/j.eswa.2021.115490
摘要

The prediction of stock price return volatilities is important for financial companies and investors to help to measure and managing market risk and to support financial decision-making. The literature points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) specification - which attempt to forecast realized volatilities accurately. However, recent variants of artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network based on the reservoir computing paradigm, have the potential for improving time series prediction. This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN, in forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an average mean squared error of 5.78 × 10−8, 5.78 × 10−8, and 1.16 × 10−7, for 1, 5, and 21 days ahead on the test set, respectively. The improvement is statistically significant with an average rank of 1.44 considering the three different datasets and forecasting horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助五四三二一采纳,获得10
刚刚
orixero应助fenghao采纳,获得10
1秒前
窝恁叠发布了新的文献求助10
1秒前
求助人员发布了新的文献求助10
1秒前
Nxxxxxx发布了新的文献求助10
2秒前
Foalphaz完成签到,获得积分10
2秒前
2秒前
赘婿应助stay采纳,获得20
2秒前
汉堡包应助波恰采纳,获得10
3秒前
3秒前
俊逸枕头发布了新的文献求助10
3秒前
3秒前
托塔李天王完成签到,获得积分10
3秒前
4秒前
4秒前
快乐小王完成签到 ,获得积分10
4秒前
CQMZY_2025完成签到,获得积分10
4秒前
功夫熊猫完成签到,获得积分10
4秒前
星辰大海应助ZYW采纳,获得20
4秒前
4311完成签到,获得积分10
4秒前
Ava应助尘扬采纳,获得30
4秒前
zzzz完成签到,获得积分20
4秒前
范户晓完成签到,获得积分10
5秒前
Luke完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
xmyang完成签到,获得积分10
6秒前
6秒前
Lucas应助化学课die表采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
今天也要努力呀完成签到,获得积分10
7秒前
8秒前
小妮子完成签到,获得积分10
8秒前
8秒前
无花果应助yeruian采纳,获得10
8秒前
可燃冰完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218