Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility

自回归积分移动平均 计算机科学 人工神经网络 粒子群优化 均方误差 回声状态网络 自回归模型 股票市场 多层感知器 波动性(金融) 时间序列 人工智能 计量经济学 机器学习 循环神经网络 统计 数学 古生物学 生物
作者
Gabriel Trierweiler Ribeiro,André Alves Portela Santos,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115490-115490 被引量:95
标识
DOI:10.1016/j.eswa.2021.115490
摘要

The prediction of stock price return volatilities is important for financial companies and investors to help to measure and managing market risk and to support financial decision-making. The literature points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) specification - which attempt to forecast realized volatilities accurately. However, recent variants of artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network based on the reservoir computing paradigm, have the potential for improving time series prediction. This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN, in forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an average mean squared error of 5.78 × 10−8, 5.78 × 10−8, and 1.16 × 10−7, for 1, 5, and 21 days ahead on the test set, respectively. The improvement is statistically significant with an average rank of 1.44 considering the three different datasets and forecasting horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡菠萝完成签到 ,获得积分10
2秒前
麦子完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
默默莫莫完成签到 ,获得积分10
5秒前
橘生淮南完成签到,获得积分10
9秒前
韭菜盒子完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
17秒前
小药童完成签到,获得积分0
19秒前
hj123完成签到,获得积分10
24秒前
三石完成签到 ,获得积分10
25秒前
她的城完成签到,获得积分0
29秒前
Ha完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
39秒前
木雨亦潇潇完成签到,获得积分10
41秒前
青木完成签到 ,获得积分10
45秒前
Orange应助王蕊采纳,获得10
46秒前
完犊子完成签到,获得积分10
49秒前
失眠的笑翠完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
you完成签到,获得积分10
53秒前
nannan完成签到 ,获得积分10
54秒前
55秒前
36456657完成签到,获得积分0
56秒前
王吉萍完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
王蕊发布了新的文献求助10
1分钟前
WW完成签到 ,获得积分10
1分钟前
jw完成签到,获得积分10
1分钟前
1分钟前
77完成签到 ,获得积分10
1分钟前
1分钟前
lan发布了新的文献求助10
1分钟前
聪明的二休完成签到,获得积分10
1分钟前
易水完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
allzzwell完成签到 ,获得积分10
1分钟前
方圆完成签到 ,获得积分10
1分钟前
Dsunflower完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839