Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility

自回归积分移动平均 计算机科学 人工神经网络 粒子群优化 均方误差 回声状态网络 自回归模型 股票市场 多层感知器 波动性(金融) 时间序列 人工智能 计量经济学 机器学习 循环神经网络 统计 数学 古生物学 生物
作者
Gabriel Trierweiler Ribeiro,André Alves Portela Santos,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115490-115490 被引量:95
标识
DOI:10.1016/j.eswa.2021.115490
摘要

The prediction of stock price return volatilities is important for financial companies and investors to help to measure and managing market risk and to support financial decision-making. The literature points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) specification - which attempt to forecast realized volatilities accurately. However, recent variants of artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network based on the reservoir computing paradigm, have the potential for improving time series prediction. This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN, in forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an average mean squared error of 5.78 × 10−8, 5.78 × 10−8, and 1.16 × 10−7, for 1, 5, and 21 days ahead on the test set, respectively. The improvement is statistically significant with an average rank of 1.44 considering the three different datasets and forecasting horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
llllliu发布了新的文献求助10
1秒前
2秒前
WaEi发布了新的文献求助10
2秒前
gjq发布了新的文献求助50
3秒前
凡人完成签到 ,获得积分10
3秒前
11发布了新的文献求助20
4秒前
张小龙完成签到,获得积分10
5秒前
7秒前
沉静凡松发布了新的文献求助10
7秒前
drhhh完成签到,获得积分10
8秒前
所所应助soooyaaa采纳,获得10
8秒前
tanfor发布了新的文献求助10
8秒前
8秒前
蟪蛄鸪完成签到 ,获得积分20
10秒前
10秒前
莫菲梦发布了新的文献求助10
12秒前
13秒前
浮游应助wuwuwu采纳,获得10
13秒前
香蕉觅云应助李大帅采纳,获得10
14秒前
15秒前
雨陌完成签到,获得积分10
15秒前
完美世界应助年轻孤兰采纳,获得30
15秒前
TCC发布了新的文献求助10
17秒前
糖炒李子发布了新的文献求助10
18秒前
19秒前
巧克力怪完成签到 ,获得积分10
20秒前
田様应助蔚蓝采纳,获得10
20秒前
简单的八宝粥完成签到,获得积分10
22秒前
23秒前
加油完成签到 ,获得积分10
27秒前
风语村发布了新的文献求助10
27秒前
研友_VZG7GZ应助冷静香菇采纳,获得10
27秒前
llllliu发布了新的文献求助10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
烤冷面应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312