Novel hybrid model based on echo state neural network applied to the prediction of stock price return volatility

自回归积分移动平均 计算机科学 人工神经网络 粒子群优化 均方误差 回声状态网络 自回归模型 股票市场 多层感知器 波动性(金融) 时间序列 人工智能 计量经济学 机器学习 循环神经网络 统计 数学 古生物学 生物
作者
Gabriel Trierweiler Ribeiro,André Alves Portela Santos,Viviana Cocco Mariani,Leandro dos Santos Coelho
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115490-115490 被引量:95
标识
DOI:10.1016/j.eswa.2021.115490
摘要

The prediction of stock price return volatilities is important for financial companies and investors to help to measure and managing market risk and to support financial decision-making. The literature points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) specification - which attempt to forecast realized volatilities accurately. However, recent variants of artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network based on the reservoir computing paradigm, have the potential for improving time series prediction. This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN, in forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an average mean squared error of 5.78 × 10−8, 5.78 × 10−8, and 1.16 × 10−7, for 1, 5, and 21 days ahead on the test set, respectively. The improvement is statistically significant with an average rank of 1.44 considering the three different datasets and forecasting horizons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助xiaoli采纳,获得10
刚刚
无问发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
paixxxxx发布了新的文献求助10
2秒前
bkagyin应助张头发采纳,获得10
2秒前
llj完成签到,获得积分10
3秒前
4秒前
Christ完成签到 ,获得积分10
4秒前
野子完成签到,获得积分10
4秒前
null应助你好采纳,获得10
4秒前
Morch2021发布了新的文献求助10
4秒前
4秒前
4秒前
orixero应助绵绵采纳,获得10
4秒前
4秒前
丁帅发布了新的文献求助20
5秒前
liang发布了新的文献求助10
5秒前
zzz发布了新的文献求助10
5秒前
6秒前
万金油完成签到,获得积分10
6秒前
传奇3应助容二遥采纳,获得10
6秒前
Mathea完成签到,获得积分10
6秒前
llj发布了新的文献求助10
7秒前
8秒前
JamesPei应助William鉴哲采纳,获得10
8秒前
科研大捞发布了新的文献求助10
9秒前
今后应助嘛吉采纳,获得10
9秒前
yyyyyyyyy发布了新的文献求助10
9秒前
9秒前
迪亚士的好望角完成签到,获得积分20
9秒前
JoymeansU完成签到,获得积分10
9秒前
10秒前
10秒前
11完成签到 ,获得积分10
10秒前
端庄向雁发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785