Reinforcement learning-based sensitive semantic location privacy protection for VANETs

计算机科学 强化学习 利用 服务质量 差别隐私 推论 智能交通系统 计算机网络 计算机安全 数据挖掘 人工智能 工程类 土木工程
作者
Minghui Min,Weihang Wang,Liang Xiao,Yilin Xiao,Zhu Han
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 244-260 被引量:32
标识
DOI:10.23919/jcc.2021.06.019
摘要

Location-based services (LBS) in vehicular ad hoc networks (VANETs) must protect users' privacy and address the threat of the exposure of sensitive locations during LBS requests. Users release not only their geographical but also semantic information of the visited places (e.g., hospital). This sensitive information enables the inference attacker to exploit the users' preferences and life patterns. In this paper we propose a reinforcement learning (RL) based sensitive semantic location privacy protection scheme. This scheme uses the idea of differential privacy to randomize the released vehicle locations and adaptively selects the perturbation policy based on the sensitivity of the semantic location and the attack history. This scheme enables a vehicle to optimize the perturbation policy in terms of the privacy and the quality of service (QoS) loss without being aware of the current inference attack model in a dynamic privacy protection process. To solve the location protection problem with high-dimensional and continuous-valued perturbation policy variables, a deep deterministic policy gradient-based semantic location perturbation scheme (DSLP) is developed. The actor part is used to generate continuous privacy budget and perturbation angle, and the critic part is used to estimate the performance of the policy. Simulations demonstrate the DSLP-based scheme outperforms the benchmark schemes, which increases the privacy, reduces the QoS loss, and increases the utility of the vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
汪汪发布了新的文献求助10
2秒前
结实星星完成签到,获得积分0
4秒前
4秒前
司空豁完成签到,获得积分10
4秒前
无花果应助绺妙采纳,获得10
5秒前
SciGPT应助鸭鸭采纳,获得10
6秒前
6秒前
羊羊完成签到 ,获得积分10
6秒前
7秒前
万能图书馆应助汪汪采纳,获得10
8秒前
万能图书馆应助咕嘟咕嘟采纳,获得10
8秒前
小马甲应助ShiyaoWang采纳,获得10
9秒前
Jasper应助yanna采纳,获得20
9秒前
10秒前
吉以寒完成签到,获得积分10
11秒前
zhongu应助Yoki采纳,获得10
14秒前
xf完成签到,获得积分10
15秒前
16秒前
wind完成签到,获得积分10
16秒前
16秒前
18秒前
思源应助沙不凡采纳,获得10
18秒前
77777完成签到,获得积分20
19秒前
糖大唐完成签到,获得积分10
20秒前
kawing完成签到,获得积分10
22秒前
冷傲的太英完成签到,获得积分10
23秒前
水凝胶发布了新的文献求助10
23秒前
玩命的一笑完成签到,获得积分20
23秒前
23秒前
25秒前
乐乐应助葛根采纳,获得10
27秒前
27秒前
科研通AI5应助Yoki采纳,获得10
27秒前
桐桐应助水果采纳,获得10
28秒前
Khr1stINK发布了新的文献求助20
28秒前
28秒前
Y20发布了新的文献求助10
28秒前
liuwei完成签到,获得积分10
29秒前
ding应助joe_liu采纳,获得10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814