Characterization of specific spatial functional connectivity difference in depression during sleep

脑电图 萧条(经济学) 判别式 多导睡眠图 心理学 病态的 神经科学 听力学 医学 内科学 人工智能 计算机科学 宏观经济学 经济
作者
Jiakai Lian,Yingjie Song,Yangting Zhang,Xinwen Guo,Jinfeng Wen,Yuxi Luo
出处
期刊:Journal of Neuroscience Research [Wiley]
卷期号:99 (11): 3021-3034 被引量:7
标识
DOI:10.1002/jnr.24947
摘要

Abstract Depression is a common mental illness and a large number of researchers have been still devoted to exploring effective biomarkers for the identification of depression. Few researches have been conducted on functional connectivity (FC) during sleep in depression. In this paper, a novel depression characterization is proposed using specific spatial FC features of sleep electroencephalography (EEG). Overnight polysomnography recordings were obtained from 26 healthy individuals and 25 patients with depression. The weighted phase lag indexes (WPLIs) of four frequency bands and five sleep periods were obtained from 16 EEG channels. The high discriminative connections extracted via feature evaluation and the cross‐within variation (CW)—the spatial feature constructed to characterize the different performances in inter‐ and intra‐hemispheric FC based on WPLIs, were utilized to classify patients and normal controls. The results showed that enhanced average FC and spatial differences, higher inter‐hemispheric FC and lower intra‐hemispheric FC, were found in patients. Furthermore, abnormalities in the inter‐hemispheric connections of the temporal lobe in the theta band should be important indicators of depression. Finally, both CW and high discriminative WPLI features performed well in depression screening and CW was more specific for characterizing abnormal cortical EEG performance of depression. Our work investigated and characterized the abnormalities in sleep cortical activity in patients with depression, and may provide potential biomarkers for assisting with depression identification and new insights into the understanding of pathological mechanisms in depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助ubiqutin采纳,获得10
1秒前
Wiggins完成签到,获得积分10
1秒前
adi完成签到,获得积分10
1秒前
小马甲应助猫了个喵采纳,获得10
1秒前
浮浮世世给浮浮世世的求助进行了留言
2秒前
海鸥海鸥发布了新的文献求助10
3秒前
田様应助稀罕你采纳,获得10
4秒前
汤浩宏发布了新的文献求助10
5秒前
天天完成签到 ,获得积分10
5秒前
ray发布了新的文献求助10
5秒前
Hello应助wang采纳,获得10
6秒前
qq完成签到 ,获得积分10
6秒前
Jasper应助zoloft采纳,获得10
6秒前
年华完成签到,获得积分10
6秒前
8秒前
充电宝应助伯赏诗霜采纳,获得50
10秒前
ubiqutin完成签到,获得积分10
11秒前
大模型应助Anquan采纳,获得30
11秒前
搜集达人应助饱满的紫伊采纳,获得30
12秒前
科研通AI5应助海鸥海鸥采纳,获得10
13秒前
ubiqutin发布了新的文献求助10
13秒前
14秒前
浮浮世世发布了新的文献求助50
14秒前
zoloft完成签到,获得积分10
16秒前
忆韵完成签到,获得积分10
16秒前
susu完成签到,获得积分20
18秒前
隐形曼青应助YYJ25采纳,获得10
19秒前
19秒前
zoloft发布了新的文献求助10
20秒前
yhc完成签到,获得积分10
20秒前
季生发布了新的文献求助60
21秒前
老孙完成签到,获得积分10
22秒前
23秒前
汤浩宏完成签到,获得积分10
26秒前
26秒前
yudandan@CJLU发布了新的文献求助10
28秒前
Zkxxxx完成签到,获得积分10
28秒前
123完成签到,获得积分10
29秒前
大王卡完成签到,获得积分20
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849