Real-time 3D-Lidar, MMW Radar and GPS/IMU fusion based vehicle detection and tracking in unstructured environment

计算机科学 惯性测量装置 全球定位系统 计算机视觉 激光雷达 稳健性(进化) 人工智能 传感器融合 雷达 雷达跟踪器 车辆跟踪系统 跟踪系统 实时计算 遥感 卡尔曼滤波器 地理 电信 生物化学 化学 基因
作者
Ning Li,Caixia Lu,Xuewei Yu,Xueyan Liu,Bo Su
标识
DOI:10.1109/icra48506.2021.9562063
摘要

To solve the problem of unmanned ground vehicle leader-follower formation transportation in unstructured environment, we propose a novel target detection and tracking method based on multi-sensor fusion perception. Combined with 3D-Lidar, millimeter wave Radar and GPS/IMU, the proposed method can achieve stable target detection and continuous tracking of both static and dynamic vehicles. First, 3D-Lidar is used to detect the geometric model of the leader vehicle to complete the initialization of tracking target and it can also be assisted for target tracking. Then during the movement, the dynamic leader is mainly tracked through millimeter wave Radar as this sensor can keep tracking the same target with a constant index and effectively distinguish dynamic vehicle from other static obstacles according to relative speed estimation. In addition, by using GPS/IMU based integrated navigation, the movement trend of the leader can be derived according to the echo vehicle pose information and the relative position relationship. This is helpful to reduce the region of interest for target tracking and improve the real-time performance. In different unstructured environments, we perform the leader-follower formation transportation experiments for hundreds of kilometers. In rough terrain, the maximum tracking speed can still reach 40km/h and the maximum tracking distance can be up to 100 meters. Experiments show that the proposed method is suitable for vehicle target detection and tracking in unstructured environment. It has good robustness and high real-time performance with an average processing frame rate of 20Hz. The proposed method can be used for the formation transportation of unmanned ground vehicles to reduce labor costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助王侯将相采纳,获得10
1秒前
ferny发布了新的文献求助10
2秒前
ccjcc完成签到,获得积分10
3秒前
jessie发布了新的文献求助20
4秒前
Hello应助gaoqg采纳,获得10
6秒前
生动的战斗机完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
时尚数据线完成签到,获得积分10
14秒前
14秒前
12完成签到,获得积分10
15秒前
丰富的土豆应助yoesyte采纳,获得30
17秒前
王天天完成签到 ,获得积分10
18秒前
liuwei发布了新的文献求助10
21秒前
兴奋念真发布了新的文献求助10
23秒前
hsing发布了新的文献求助10
25秒前
liuwei完成签到,获得积分10
26秒前
hhh发布了新的文献求助10
28秒前
Tying完成签到 ,获得积分10
29秒前
小马甲应助忧心的土豆采纳,获得10
29秒前
嗒嗒发布了新的文献求助10
33秒前
香蕉觅云应助淡定海亦采纳,获得10
34秒前
34秒前
火星上的羽毛应助budingman采纳,获得20
34秒前
加一点荒谬完成签到,获得积分10
35秒前
35秒前
37秒前
所所应助hsing采纳,获得10
38秒前
许多多完成签到,获得积分10
38秒前
zs发布了新的文献求助10
39秒前
笑点低的靳完成签到,获得积分10
39秒前
40秒前
40秒前
45秒前
777发布了新的文献求助10
46秒前
笨笨中心发布了新的文献求助10
47秒前
顺心的问薇完成签到 ,获得积分10
48秒前
50秒前
51秒前
三年H发布了新的文献求助10
51秒前
Rondab应助照九州采纳,获得20
55秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952525
求助须知:如何正确求助?哪些是违规求助? 3497889
关于积分的说明 11089301
捐赠科研通 3228428
什么是DOI,文献DOI怎么找? 1784906
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309