The Best of Both Worlds: Forecasting US Equity Market Returns Using a Hybrid Machine Learning–Time Series Approach

计量经济学 计算机科学 衡平法 自回归模型 库存(枪支) 股票市场 时间序列 经济 机器学习 工程类 政治学 机械工程 生物 古生物学 法学
作者
Haifeng Wang,Harshdeep Ahluwalia,Roger Aliaga‐Díaz,Joseph H. Davis
出处
期刊:The journal of financial data science [Pageant Media US]
卷期号:3 (2): 9-20
标识
DOI:10.3905/jfds.2021.3.2.009
摘要

Predicting long-term equity market returns is of great importance for investors to strategically allocate their assets. The authors explore machine learning (ML) methods to forecast 10-year-ahead US stock returns and compare the results with the traditional Shiller regression-based forecasts more commonly used in the asset-management industry. The authors find that ML techniques can only modestly improve the forecast accuracy of a traditional Shiller cyclically adjusted price-to-earnings ratio model, and they actually result in worse performance than the vector autoregressive model (VAR)–based two-step approach. The authors then implement this approach with ML techniques and allow for unspecified nonlinear relationships (a hybrid ML-VAR approach). They find about 50% improvement in real-time forecast accuracy for 10-year annualized US stock returns. TOPICS:Security analysis and valuation, big data/machine learning, quantitative methods, statistical methods, performance measurement Key Findings ▪ Applying machine learning (ML) techniques within a robust economic framework such as Davis et al.’s (2018) two-step approach is superior than applying such techniques in isolation (directly forecasting equity returns). ▪ Using the two-step approach, integrating ML with the vector autoregressive model (ML-VAR) to dynamically forecast earning yields reduces dramatically out-of-sample forecast errors, yielding an improvement of about 50% in forecast accuracy for long-horizon U.S. stock market returns. ▪ Among the ML algorithms tested, the ensemble method, which averages all other model forecasts, consistently provides improved predictive power.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AntWiser完成签到,获得积分10
4秒前
5秒前
6秒前
磊磊完成签到,获得积分10
8秒前
liuzengzhang666完成签到,获得积分10
9秒前
10秒前
Xuech发布了新的文献求助10
12秒前
13秒前
14秒前
16秒前
16秒前
S先生完成签到,获得积分10
16秒前
坚果爱吃坚果完成签到,获得积分10
17秒前
科研通AI5应助Xuech采纳,获得10
19秒前
今后应助123采纳,获得10
20秒前
mang_er发布了新的文献求助10
22秒前
落寞的妖妖完成签到,获得积分20
24秒前
结实芝麻完成签到 ,获得积分10
24秒前
27秒前
29秒前
FrozNineTivus完成签到,获得积分10
29秒前
wu完成签到 ,获得积分10
30秒前
科研小风发布了新的文献求助10
32秒前
34秒前
kimon完成签到,获得积分10
34秒前
37秒前
旺仔先生完成签到,获得积分10
38秒前
研友_564485完成签到,获得积分10
40秒前
zzrg发布了新的文献求助10
40秒前
CipherSage应助石头慢半拍采纳,获得10
42秒前
42秒前
双下巴完成签到,获得积分10
43秒前
丘比特应助一树灯笼采纳,获得10
44秒前
44秒前
47秒前
一目发布了新的文献求助10
47秒前
饼饼完成签到,获得积分20
48秒前
这世界折磨我完成签到,获得积分10
50秒前
52秒前
zfn19990411完成签到,获得积分10
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673100
求助须知:如何正确求助?哪些是违规求助? 3229040
关于积分的说明 9783423
捐赠科研通 2939397
什么是DOI,文献DOI怎么找? 1611057
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736250