3D Dental Biometrics: Automatic Pose-invariant Dental Arch Extraction and Matching

人工智能 计算机科学 生物识别 模式识别(心理学) 面部识别系统 计算机视觉 匹配(统计) 面子(社会学概念) 特征提取 虹膜识别 不变(物理)
作者
Xin Zhong,Zhiyuan Zhang
出处
期刊:International Conference on Pattern Recognition 卷期号:: 6524-6530
标识
DOI:10.1109/icpr48806.2021.9412829
摘要

A novel automatic pose-invariant dental arch extraction and matching framework is developed for 3D dental identification using laser-scanned dental plasters. In our previous attempt [1]–[5], 3D point-based algorithms have been developed and they have shown a few advantages over existing 2D dental identifications. This study is a continuous effort in developing arch-based algorithms to extract and match dental arch feature in an automatic and pose-invariant way. As best as we know, this is the first attempt at automatic dental arch extraction and matching for 3D dental identification. A Radial Ray Algorithm (RRA) is proposed by projecting dental arch shape from 3D to 2D. This algorithm is fully automatic and fast. Preliminary identification result is obtained by matching 11 postmortem (PM) samples against 200 ante-mortem (AM) samples. 72.7% samples achieved top 5% accuracy. 90.9% samples achieved top 10% accuracy and all 11 samples (100%) achieved top 15.5% accuracy out of the 200-rank list. In addition, the time for identifying a single subject from 200 subjects has been significantly reduced from 45 minutes to 5 minutes by matching the extracted 2D dental arch. Although the extracted 2D arch feature is not as accurate and discriminative as the full 3D arch, it may serve as an important filter feature to improve the identification speed in future investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助YujieWu采纳,获得10
3秒前
Axel完成签到,获得积分10
4秒前
乐乐应助小蔡采纳,获得10
4秒前
xiaoranzi6661发布了新的文献求助30
5秒前
自由山槐完成签到,获得积分10
5秒前
5秒前
Gerg发布了新的文献求助10
6秒前
淡定的鸭子完成签到,获得积分10
6秒前
6秒前
11完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
11秒前
111发布了新的文献求助10
12秒前
12秒前
14秒前
小蔡发布了新的文献求助10
16秒前
17秒前
18秒前
orixero应助chiweiyoung采纳,获得10
19秒前
可爱的函函应助吃猫的鱼采纳,获得10
19秒前
大象放冰箱完成签到,获得积分10
19秒前
20秒前
Hello应助111采纳,获得10
20秒前
20秒前
20秒前
愉快的真应助Dr.Yang采纳,获得30
21秒前
852应助Antoine采纳,获得10
21秒前
久伴久爱完成签到 ,获得积分10
22秒前
tjzbw发布了新的文献求助10
24秒前
123发布了新的文献求助10
25秒前
111完成签到,获得积分10
26秒前
26秒前
27秒前
罗大大完成签到 ,获得积分10
29秒前
HotKid应助害怕采纳,获得10
30秒前
30秒前
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023842
求助须知:如何正确求助?哪些是违规求助? 3563836
关于积分的说明 11343764
捐赠科研通 3295164
什么是DOI,文献DOI怎么找? 1814969
邀请新用户注册赠送积分活动 889615
科研通“疑难数据库(出版商)”最低求助积分说明 813048