Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

人工智能 计算机科学 人工神经网络 深度学习 图形 模式识别(心理学) 机器学习 利用 监督学习 代表(政治) 排名(信息检索) 理论计算机科学 计算机安全 政治 政治学 法学
作者
Yiğit Özen,Selim Aksoy,Kemal Kösemehmetoğlu,Sevgen Önder,Ayşegül Üner
标识
DOI:10.1109/icpr48806.2021.9412903
摘要

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nini发布了新的文献求助10
刚刚
田様应助不安的鞋垫采纳,获得20
3秒前
4秒前
月亮moon完成签到,获得积分10
4秒前
张玉发布了新的文献求助10
5秒前
青夏发布了新的文献求助10
6秒前
轻松的鑫完成签到 ,获得积分10
7秒前
9秒前
10秒前
曼凡发布了新的文献求助10
10秒前
野子发布了新的文献求助10
11秒前
Huangxy发布了新的文献求助10
11秒前
爱窦完成签到 ,获得积分10
12秒前
12秒前
牛肉面发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
赘婿应助漂亮孤兰采纳,获得10
15秒前
关关完成签到 ,获得积分10
16秒前
当当完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助野子采纳,获得10
18秒前
19秒前
共享精神应助肖珂采纳,获得10
20秒前
香蕉觅云应助pansy采纳,获得30
21秒前
22秒前
22秒前
24秒前
wsazah完成签到,获得积分10
24秒前
耳百完成签到,获得积分10
24秒前
QUA应助咖飞采纳,获得10
24秒前
白佚行完成签到 ,获得积分10
25秒前
涛声依旧应助包宇采纳,获得10
27秒前
yfzhang发布了新的文献求助10
27秒前
Rec完成签到 ,获得积分10
27秒前
没有昵称完成签到,获得积分10
28秒前
orixero应助张玉采纳,获得10
28秒前
29秒前
爆米花应助牛肉面采纳,获得10
31秒前
隐形曼青应助MX001采纳,获得10
32秒前
大意的砖家完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971655
求助须知:如何正确求助?哪些是违规求助? 3516320
关于积分的说明 11181963
捐赠科研通 3251445
什么是DOI,文献DOI怎么找? 1795889
邀请新用户注册赠送积分活动 876131
科研通“疑难数据库(出版商)”最低求助积分说明 805266