Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

人工智能 计算机科学 人工神经网络 深度学习 图形 模式识别(心理学) 机器学习 利用 监督学习 代表(政治) 排名(信息检索) 理论计算机科学 政治学 计算机安全 政治 法学
作者
Yiğit Özen,Selim Aksoy,Kemal Kösemehmetoğlu,Sevgen Önder,Ayşegül Üner
标识
DOI:10.1109/icpr48806.2021.9412903
摘要

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分10
刚刚
刚刚
139完成签到 ,获得积分0
刚刚
学业繁忙发布了新的文献求助10
刚刚
LM完成签到 ,获得积分10
1秒前
柒z完成签到,获得积分10
2秒前
2秒前
小仙女发布了新的文献求助10
3秒前
4秒前
4秒前
柏觅夏完成签到,获得积分20
5秒前
7秒前
8秒前
TKMY完成签到,获得积分10
8秒前
华仔应助719450采纳,获得10
8秒前
淡然智宸完成签到,获得积分10
8秒前
wanci应助glq采纳,获得10
9秒前
Tina完成签到 ,获得积分10
9秒前
10秒前
yi5feng发布了新的文献求助10
11秒前
学术菜菜发布了新的文献求助10
11秒前
菜菜菜狗发布了新的文献求助30
11秒前
ixueyi完成签到,获得积分10
11秒前
777发布了新的文献求助10
13秒前
陈敏发布了新的文献求助10
13秒前
lu完成签到,获得积分10
13秒前
Jolin发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
lixiansheng完成签到,获得积分20
18秒前
打打应助qjx采纳,获得10
19秒前
舒桐驳回了iNk应助
19秒前
旺旺发布了新的文献求助10
20秒前
yi5feng完成签到,获得积分10
20秒前
719450发布了新的文献求助10
20秒前
小仙女发布了新的文献求助10
21秒前
迷路的手机完成签到 ,获得积分10
22秒前
情怀应助季生采纳,获得10
23秒前
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168356
求助须知:如何正确求助?哪些是违规求助? 2819704
关于积分的说明 7927634
捐赠科研通 2479614
什么是DOI,文献DOI怎么找? 1321024
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602460