亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

人工智能 计算机科学 人工神经网络 深度学习 图形 模式识别(心理学) 机器学习 利用 监督学习 代表(政治) 排名(信息检索) 理论计算机科学 计算机安全 政治 政治学 法学
作者
Yiğit Özen,Selim Aksoy,Kemal Kösemehmetoğlu,Sevgen Önder,Ayşegül Üner
标识
DOI:10.1109/icpr48806.2021.9412903
摘要

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
巫马百招完成签到,获得积分10
5秒前
lyw发布了新的文献求助10
7秒前
wanci应助Fortune采纳,获得10
8秒前
fossick2010完成签到 ,获得积分10
21秒前
Penny完成签到,获得积分10
40秒前
44秒前
Penny发布了新的文献求助10
45秒前
andrele发布了新的文献求助50
49秒前
Fortune发布了新的文献求助10
49秒前
颜安完成签到,获得积分20
1分钟前
张张完成签到 ,获得积分10
1分钟前
1分钟前
Fortune完成签到,获得积分10
1分钟前
Vincent发布了新的文献求助10
1分钟前
爆米花应助lzmcsp采纳,获得10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
Vincent完成签到,获得积分10
1分钟前
蓝色牛马完成签到,获得积分10
1分钟前
xuzb发布了新的文献求助10
1分钟前
搜集达人应助蓝色牛马采纳,获得10
1分钟前
1分钟前
lzmcsp发布了新的文献求助10
2分钟前
2分钟前
lyw发布了新的文献求助10
2分钟前
lzmcsp完成签到,获得积分10
2分钟前
andrele发布了新的文献求助200
2分钟前
2分钟前
颜安发布了新的文献求助10
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
坦率的诗蕾完成签到 ,获得积分10
2分钟前
_ban完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
在水一方应助Fiy采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507