Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

人工智能 计算机科学 人工神经网络 深度学习 图形 模式识别(心理学) 机器学习 利用 监督学习 代表(政治) 排名(信息检索) 理论计算机科学 政治学 计算机安全 政治 法学
作者
Yiğit Özen,Selim Aksoy,Kemal Kösemehmetoğlu,Sevgen Önder,Ayşegül Üner
标识
DOI:10.1109/icpr48806.2021.9412903
摘要

Deep learning has achieved successful performance in representation learning and content-based retrieval of histopathology images. The commonly used setting in deep learning-based approaches is supervised training of deep neural networks for classification, and using the trained model to extract representations that are used for computing and ranking the distances between images. However, there are two remaining major challenges. First, supervised training of deep neural networks requires large amount of manually labeled data which is often limited in the medical field. Transfer learning has been used to overcome this challenge, but its success remained limited. Second, the clinical practice in histopathology necessitates working with regions of interest (ROI) of multiple diagnostic classes with arbitrary shapes and sizes. The typical solution to this problem is to aggregate the representations of fixed-sized patches cropped from these regions to obtain region-level representations. However, naive methods cannot sufficiently exploit the rich contextual information in the complex tissue structures. To tackle these two challenges, we propose a generic method that utilizes graph neural networks (GNN), combined with a self-supervised training method using a contrastive loss. GNN enables representing arbitrarily-shaped ROIs as graphs and encoding contextual information. Self-supervised contrastive learning improves quality of learned representations without requiring labeled data. The experiments using a challenging breast histopathology data set show that the proposed method achieves better performance than the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻找组织完成签到,获得积分10
2秒前
外向的醉易完成签到,获得积分10
2秒前
5秒前
彭于晏应助小龙采纳,获得10
5秒前
禾禾禾完成签到 ,获得积分10
6秒前
画龙点睛完成签到 ,获得积分10
7秒前
山水之乐发布了新的文献求助10
8秒前
13秒前
庄怀逸完成签到 ,获得积分10
14秒前
Gu完成签到,获得积分10
15秒前
16秒前
tang完成签到,获得积分10
17秒前
KAI完成签到 ,获得积分10
19秒前
uuuu完成签到 ,获得积分10
19秒前
Gu发布了新的文献求助10
19秒前
Gary完成签到 ,获得积分10
20秒前
21秒前
21秒前
实验室应助科研通管家采纳,获得30
21秒前
852应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
幺幺幺发布了新的文献求助10
21秒前
CR7应助科研通管家采纳,获得20
21秒前
不倦应助科研通管家采纳,获得10
21秒前
26秒前
瘦瘦的似狮完成签到 ,获得积分10
30秒前
迷失自我发布了新的文献求助10
31秒前
33秒前
Gaochang完成签到 ,获得积分10
34秒前
小包子完成签到,获得积分10
36秒前
白夜完成签到 ,获得积分10
36秒前
ZQL完成签到,获得积分10
37秒前
Ya完成签到 ,获得积分10
38秒前
科研人完成签到 ,获得积分10
39秒前
逢场作戱__完成签到 ,获得积分10
41秒前
41秒前
迷失自我完成签到,获得积分10
42秒前
大哥大姐帮帮忙完成签到,获得积分10
42秒前
Neltharion完成签到,获得积分10
43秒前
肉肉完成签到,获得积分10
46秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517