Robust Deep Semi-Supervised Learning: A Brief Introduction

稳健性(进化) 计算机科学 人工智能 机器学习 标记数据 水准点(测量) 深度学习 生物化学 化学 大地测量学 基因 地理
作者
Lan-Zhe Guo,Zhi Zhou,Yufeng Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.05975
摘要

Semi-supervised learning (SSL) is the branch of machine learning that aims to improve learning performance by leveraging unlabeled data when labels are insufficient. Recently, SSL with deep models has proven to be successful on standard benchmark tasks. However, they are still vulnerable to various robustness threats in real-world applications as these benchmarks provide perfect unlabeled data, while in realistic scenarios, unlabeled data could be corrupted. Many researchers have pointed out that after exploiting corrupted unlabeled data, SSL suffers severe performance degradation problems. Thus, there is an urgent need to develop SSL algorithms that could work robustly with corrupted unlabeled data. To fully understand robust SSL, we conduct a survey study. We first clarify a formal definition of robust SSL from the perspective of machine learning. Then, we classify the robustness threats into three categories: i) distribution corruption, i.e., unlabeled data distribution is mismatched with labeled data; ii) feature corruption, i.e., the features of unlabeled examples are adversarially attacked; and iii) label corruption, i.e., the label distribution of unlabeled data is imbalanced. Under this unified taxonomy, we provide a thorough review and discussion of recent works that focus on these issues. Finally, we propose possible promising directions within robust SSL to provide insights for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮海蓝完成签到 ,获得积分10
刚刚
刚刚
谦让晓晓完成签到 ,获得积分20
1秒前
4秒前
5秒前
柚子发布了新的文献求助10
6秒前
6秒前
清脆南霜发布了新的文献求助10
6秒前
7秒前
Jasper应助bunny采纳,获得10
8秒前
8秒前
10秒前
科研通AI6.1应助青云采纳,获得30
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
田様应助杨小鸿采纳,获得10
12秒前
Leon_Kim发布了新的文献求助10
12秒前
14秒前
Doctor.TANG完成签到 ,获得积分10
15秒前
充电宝应助杨榆藤采纳,获得10
15秒前
阔达之卉完成签到 ,获得积分10
17秒前
研友_VZG7GZ应助dddd采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
19秒前
爬得飞快的仲文博完成签到,获得积分10
20秒前
nancylan发布了新的文献求助30
23秒前
Orange应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
yanyan应助科研通管家采纳,获得30
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
风清扬应助科研通管家采纳,获得10
23秒前
yanyan应助科研通管家采纳,获得30
23秒前
CipherSage应助科研通管家采纳,获得10
24秒前
风清扬应助科研通管家采纳,获得10
24秒前
xnz发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978