Robust Deep Semi-Supervised Learning: A Brief Introduction

稳健性(进化) 计算机科学 人工智能 机器学习 标记数据 水准点(测量) 深度学习 生物化学 化学 大地测量学 基因 地理
作者
Lan-Zhe Guo,Zhi Zhou,Yufeng Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.05975
摘要

Semi-supervised learning (SSL) is the branch of machine learning that aims to improve learning performance by leveraging unlabeled data when labels are insufficient. Recently, SSL with deep models has proven to be successful on standard benchmark tasks. However, they are still vulnerable to various robustness threats in real-world applications as these benchmarks provide perfect unlabeled data, while in realistic scenarios, unlabeled data could be corrupted. Many researchers have pointed out that after exploiting corrupted unlabeled data, SSL suffers severe performance degradation problems. Thus, there is an urgent need to develop SSL algorithms that could work robustly with corrupted unlabeled data. To fully understand robust SSL, we conduct a survey study. We first clarify a formal definition of robust SSL from the perspective of machine learning. Then, we classify the robustness threats into three categories: i) distribution corruption, i.e., unlabeled data distribution is mismatched with labeled data; ii) feature corruption, i.e., the features of unlabeled examples are adversarially attacked; and iii) label corruption, i.e., the label distribution of unlabeled data is imbalanced. Under this unified taxonomy, we provide a thorough review and discussion of recent works that focus on these issues. Finally, we propose possible promising directions within robust SSL to provide insights for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助个性的汲采纳,获得10
1秒前
lzz发布了新的文献求助10
1秒前
青天白日完成签到,获得积分10
2秒前
yeayeayea完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
秦摆烂发布了新的文献求助10
3秒前
知还发布了新的文献求助10
4秒前
CCCCCL完成签到,获得积分10
4秒前
精灵大夫发布了新的文献求助10
4秒前
天青色等烟雨完成签到 ,获得积分10
5秒前
廖天佑完成签到,获得积分0
8秒前
张先生完成签到 ,获得积分10
11秒前
知还完成签到,获得积分10
12秒前
12秒前
安安完成签到 ,获得积分10
13秒前
14秒前
大方泥猴桃完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
123发布了新的文献求助10
18秒前
20秒前
21秒前
23秒前
77发布了新的文献求助10
23秒前
25秒前
霸气凝云完成签到 ,获得积分10
26秒前
Y.J发布了新的文献求助10
28秒前
ming发布了新的文献求助10
28秒前
看看看完成签到,获得积分10
28秒前
29秒前
29秒前
77完成签到,获得积分10
29秒前
温暖的绮完成签到,获得积分10
30秒前
Lionnn完成签到 ,获得积分10
31秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
31秒前
31秒前
何垠禹发布了新的文献求助10
32秒前
32秒前
在水一方应助淡淡梦容采纳,获得10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150