Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy.

医学 肝细胞癌 内科学 过度拟合 肿瘤科 队列 养生 放射治疗 肝病 外科
作者
Ibrahim M. Chamseddine,Yejin Kim,Brian De,Issam El Naqa,Dan G. Duda,John Wolfgang,Jennifer Pursley,Harald Paganetti,Jennifer Wo,Theodore S. Hong,Eugene J. Koay,Clemens Grassberger
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号:6: e2100169-e2100169
标识
DOI:10.1200/cci.21.00169
摘要

To stratify patients and aid clinical decision making, we developed machine learning models to predict treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular carcinoma across institutions.The models were developed using linear and nonlinear algorithms, predicting survival, nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters. The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using Harrell's c-index, area under the curve (AUC), and accuracy in high-risk populations. Models' structures were optimized in a nested cross-validation approach to prevent overfitting. A study analysis plan was registered before external validation using 143 patients from MD Anderson Cancer Center. Clinical utility was assessed using net-benefit analysis.The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent (external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy > 90%). Cause-of-death analysis showed differential modes of treatment failure in these cohorts and indicated that these models could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68 and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and revealed possible interactions of platelet count with initial liver function.Machine learning approaches can provide reliable outcome predictions in patients with hepatocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in high-risk patients, suggests novel strategies for patient stratification and treatment selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马尔尼菲蓝状菌完成签到,获得积分10
1秒前
1秒前
林een发布了新的文献求助30
1秒前
2秒前
莫兮佐发布了新的文献求助10
2秒前
Saber完成签到,获得积分10
4秒前
5秒前
5秒前
苏打完成签到,获得积分10
5秒前
lysh应助没有昵称采纳,获得80
6秒前
6秒前
追忆发布了新的文献求助10
7秒前
7秒前
pjwl完成签到 ,获得积分10
7秒前
研友_8yN60L发布了新的文献求助10
7秒前
罗四夕完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
川川完成签到,获得积分10
8秒前
9秒前
超级训熊师完成签到,获得积分10
9秒前
cherlie应助兴奋的铸海采纳,获得10
9秒前
10秒前
17835152738完成签到,获得积分10
11秒前
11秒前
高兴山兰发布了新的文献求助10
12秒前
JamesPei应助李朝霞采纳,获得10
12秒前
Dead Cells发布了新的文献求助10
13秒前
研友_8RyzBZ发布了新的文献求助10
14秒前
CipherSage应助追忆采纳,获得10
16秒前
16秒前
16秒前
17秒前
18秒前
星辰大海应助茹茹采纳,获得10
18秒前
ding应助gaogao采纳,获得30
19秒前
隐形曼青应助研友_8RyzBZ采纳,获得10
19秒前
所所应助高兴山兰采纳,获得10
20秒前
爆米花应助枫原万叶采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821