Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy.

医学 肝细胞癌 内科学 过度拟合 肿瘤科 队列 养生 放射治疗 肝病 外科
作者
Ibrahim M. Chamseddine,Yejin Kim,Brian De,Issam El Naqa,Dan G. Duda,John Wolfgang,Jennifer Pursley,Harald Paganetti,Jennifer Wo,Theodore S. Hong,Eugene J. Koay,Clemens Grassberger
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:6: e2100169-e2100169
标识
DOI:10.1200/cci.21.00169
摘要

To stratify patients and aid clinical decision making, we developed machine learning models to predict treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular carcinoma across institutions.The models were developed using linear and nonlinear algorithms, predicting survival, nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters. The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using Harrell's c-index, area under the curve (AUC), and accuracy in high-risk populations. Models' structures were optimized in a nested cross-validation approach to prevent overfitting. A study analysis plan was registered before external validation using 143 patients from MD Anderson Cancer Center. Clinical utility was assessed using net-benefit analysis.The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent (external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy > 90%). Cause-of-death analysis showed differential modes of treatment failure in these cohorts and indicated that these models could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68 and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and revealed possible interactions of platelet count with initial liver function.Machine learning approaches can provide reliable outcome predictions in patients with hepatocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in high-risk patients, suggests novel strategies for patient stratification and treatment selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cherry完成签到,获得积分10
1秒前
1秒前
010完成签到,获得积分10
2秒前
3秒前
一颗大白杨完成签到 ,获得积分10
3秒前
平常元灵发布了新的文献求助10
3秒前
长情凝丹发布了新的文献求助10
3秒前
花城诚成发布了新的文献求助10
4秒前
5秒前
en关闭了en文献求助
7秒前
彭于彦祖应助lcy采纳,获得30
7秒前
忧虑的纸飞机完成签到,获得积分20
8秒前
8秒前
9秒前
李爱国应助Bright24采纳,获得10
12秒前
13秒前
13秒前
Owen应助深海鱼油DHA采纳,获得50
14秒前
日常卖命发布了新的文献求助10
15秒前
15秒前
ZZ完成签到,获得积分20
16秒前
慕青应助mily采纳,获得10
16秒前
17秒前
123发布了新的文献求助10
17秒前
18秒前
吡啶应助小马想毕业采纳,获得10
19秒前
师无益发布了新的文献求助10
19秒前
ZZ发布了新的文献求助30
19秒前
21秒前
豆豆浆发布了新的文献求助10
21秒前
今天鱼怎么样完成签到 ,获得积分10
22秒前
22秒前
yufanhui应助wvwvwv采纳,获得10
24秒前
25秒前
Bright24发布了新的文献求助10
26秒前
Dream完成签到,获得积分10
27秒前
佟白易发布了新的文献求助10
27秒前
CipherSage应助豆豆浆采纳,获得10
28秒前
28秒前
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919