Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy.

医学 肝细胞癌 内科学 过度拟合 肿瘤科 队列 养生 放射治疗 肝病 外科
作者
Ibrahim M. Chamseddine,Yejin Kim,Brian De,Issam El Naqa,Dan G. Duda,John Wolfgang,Jennifer Pursley,Harald Paganetti,Jennifer Wo,Theodore S. Hong,Eugene J. Koay,Clemens Grassberger
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号:6: e2100169-e2100169
标识
DOI:10.1200/cci.21.00169
摘要

To stratify patients and aid clinical decision making, we developed machine learning models to predict treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular carcinoma across institutions.The models were developed using linear and nonlinear algorithms, predicting survival, nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters. The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using Harrell's c-index, area under the curve (AUC), and accuracy in high-risk populations. Models' structures were optimized in a nested cross-validation approach to prevent overfitting. A study analysis plan was registered before external validation using 143 patients from MD Anderson Cancer Center. Clinical utility was assessed using net-benefit analysis.The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent (external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy > 90%). Cause-of-death analysis showed differential modes of treatment failure in these cohorts and indicated that these models could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68 and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and revealed possible interactions of platelet count with initial liver function.Machine learning approaches can provide reliable outcome predictions in patients with hepatocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in high-risk patients, suggests novel strategies for patient stratification and treatment selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
刚刚
叶叶发布了新的文献求助10
刚刚
1秒前
2秒前
Jasper应助gyusbjshaxb采纳,获得10
2秒前
优秀的枕头完成签到,获得积分10
2秒前
2秒前
2秒前
susu完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
xu完成签到,获得积分10
3秒前
4秒前
墩墩焘完成签到,获得积分10
4秒前
生动的不尤完成签到,获得积分10
4秒前
SciGPT应助weiwei采纳,获得10
4秒前
5秒前
希望天下0贩的0应助TY采纳,获得10
5秒前
爆米花应助信号灯采纳,获得10
5秒前
YYJJHH发布了新的文献求助10
6秒前
6秒前
健壮的半青完成签到 ,获得积分10
6秒前
PP应助13击采纳,获得10
8秒前
8秒前
chen发布了新的文献求助10
8秒前
hetao286发布了新的文献求助20
8秒前
12完成签到 ,获得积分10
8秒前
高屋建瓴完成签到,获得积分10
8秒前
焱阳发布了新的文献求助10
8秒前
8秒前
8秒前
jie酱拌面应助xzn1123采纳,获得10
9秒前
shao完成签到,获得积分10
9秒前
zyx发布了新的文献求助10
9秒前
负责的蜡烛完成签到,获得积分10
9秒前
9秒前
乐乐应助橙子采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573107
求助须知:如何正确求助?哪些是违规求助? 3993602
关于积分的说明 12363019
捐赠科研通 3666834
什么是DOI,文献DOI怎么找? 2020933
邀请新用户注册赠送积分活动 1055090
科研通“疑难数据库(出版商)”最低求助积分说明 942509