亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy.

医学 肝细胞癌 内科学 过度拟合 肿瘤科 队列 养生 放射治疗 肝病 外科
作者
Ibrahim M. Chamseddine,Yejin Kim,Brian De,Issam El Naqa,Dan G. Duda,John Wolfgang,Jennifer Pursley,Harald Paganetti,Jennifer Wo,Theodore S. Hong,Eugene J. Koay,Clemens Grassberger
出处
期刊:JCO clinical cancer informatics [Lippincott Williams & Wilkins]
卷期号:6: e2100169-e2100169
标识
DOI:10.1200/cci.21.00169
摘要

To stratify patients and aid clinical decision making, we developed machine learning models to predict treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular carcinoma across institutions.The models were developed using linear and nonlinear algorithms, predicting survival, nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters. The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using Harrell's c-index, area under the curve (AUC), and accuracy in high-risk populations. Models' structures were optimized in a nested cross-validation approach to prevent overfitting. A study analysis plan was registered before external validation using 143 patients from MD Anderson Cancer Center. Clinical utility was assessed using net-benefit analysis.The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent (external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy > 90%). Cause-of-death analysis showed differential modes of treatment failure in these cohorts and indicated that these models could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68 and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and revealed possible interactions of platelet count with initial liver function.Machine learning approaches can provide reliable outcome predictions in patients with hepatocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in high-risk patients, suggests novel strategies for patient stratification and treatment selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谷粱紫槐发布了新的文献求助10
7秒前
汉堡包应助灵巧夜天采纳,获得10
8秒前
mangle完成签到,获得积分10
17秒前
24秒前
30秒前
不能随便完成签到,获得积分10
1分钟前
追三完成签到 ,获得积分10
1分钟前
李李原上草完成签到 ,获得积分10
1分钟前
天天好心覃完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
归尘发布了新的文献求助10
1分钟前
1分钟前
绝世冰淇淋完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Oldgorden发布了新的文献求助10
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
133完成签到,获得积分10
2分钟前
3分钟前
133发布了新的文献求助10
3分钟前
楚醨发布了新的文献求助10
3分钟前
Oldgorden完成签到,获得积分10
3分钟前
搜集达人应助向往采纳,获得10
3分钟前
Chroninus完成签到,获得积分10
3分钟前
俏皮马里奥完成签到 ,获得积分10
3分钟前
3分钟前
青羽完成签到,获得积分10
3分钟前
3分钟前
青羽发布了新的文献求助10
3分钟前
哇咔咔完成签到 ,获得积分10
4分钟前
4分钟前
向往发布了新的文献求助10
4分钟前
liuyamei发布了新的文献求助200
4分钟前
herococa完成签到,获得积分10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749913
求助须知:如何正确求助?哪些是违规求助? 3293171
关于积分的说明 10079984
捐赠科研通 3008527
什么是DOI,文献DOI怎么找? 1652273
邀请新用户注册赠送积分活动 787330
科研通“疑难数据库(出版商)”最低求助积分说明 752059