Predictive Modeling of Survival and Toxicity in Patients With Hepatocellular Carcinoma After Radiotherapy.

医学 肝细胞癌 内科学 过度拟合 肿瘤科 队列 养生 放射治疗 肝病 外科
作者
Ibrahim M. Chamseddine,Yejin Kim,Brian De,Issam El Naqa,Dan G. Duda,John Wolfgang,Jennifer Pursley,Harald Paganetti,Jennifer Wo,Theodore S. Hong,Eugene J. Koay,Clemens Grassberger
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:6: e2100169-e2100169
标识
DOI:10.1200/cci.21.00169
摘要

To stratify patients and aid clinical decision making, we developed machine learning models to predict treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular carcinoma across institutions.The models were developed using linear and nonlinear algorithms, predicting survival, nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters. The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using Harrell's c-index, area under the curve (AUC), and accuracy in high-risk populations. Models' structures were optimized in a nested cross-validation approach to prevent overfitting. A study analysis plan was registered before external validation using 143 patients from MD Anderson Cancer Center. Clinical utility was assessed using net-benefit analysis.The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent (external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy > 90%). Cause-of-death analysis showed differential modes of treatment failure in these cohorts and indicated that these models could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68 and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and revealed possible interactions of platelet count with initial liver function.Machine learning approaches can provide reliable outcome predictions in patients with hepatocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in high-risk patients, suggests novel strategies for patient stratification and treatment selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhj发布了新的文献求助10
刚刚
刚刚
黑沧浪亭发布了新的文献求助10
1秒前
一声空发布了新的文献求助10
1秒前
1秒前
李丽发布了新的文献求助10
1秒前
orixero应助美丽元风采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
热心的忆山完成签到,获得积分10
2秒前
飞快的邴发布了新的文献求助10
2秒前
CC完成签到,获得积分10
3秒前
无花果应助coc采纳,获得10
3秒前
奶爸回家完成签到,获得积分10
3秒前
慕青应助小杨采纳,获得10
3秒前
乐乐应助shaco采纳,获得50
4秒前
略略完成签到,获得积分10
4秒前
所所应助孙帅采纳,获得10
4秒前
打打应助123采纳,获得10
4秒前
5秒前
Hello应助优雅翎采纳,获得10
5秒前
桐桐应助蒸盐粥采纳,获得10
5秒前
5秒前
小伙伴完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
6秒前
zz发布了新的文献求助10
6秒前
11发布了新的文献求助10
7秒前
俭朴完成签到,获得积分20
7秒前
wwe发布了新的文献求助10
8秒前
万能图书馆应助hhj采纳,获得10
8秒前
8秒前
9秒前
刘丽完成签到,获得积分20
10秒前
10秒前
hami发布了新的文献求助10
10秒前
要减肥的夜蕾完成签到,获得积分20
10秒前
MLL关闭了MLL文献求助
10秒前
FiFi完成签到 ,获得积分10
11秒前
mei发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003