话语
计算机科学
情绪识别
分类器(UML)
语音识别
人工智能
自然语言处理
机器学习
作者
Ying Zhou,Xuefeng Liang,Yu Gu,Yifei Yin,Longshan Yao
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:30: 695-705
被引量:1
标识
DOI:10.1109/taslp.2022.3145287
摘要
In recent years, speech emotion recognition technology is of great significance in widespread applications such as call centers, social robots and health care. Thus, the speech emotion recognition has been attracted much attention in both industry and academic. Since emotions existing in an entire utterance may have varied probabilities, speech emotion is likely to be ambiguous, which poses great challenges to recognition tasks. However, previous studies commonly assigned a single-label or multi-label to each utterance in certain. Therefore, their algorithms result in low accuracies because of the inappropriate representation. Inspired by the optimally interacting theory, we address the ambiguous speech emotions by proposing a novel multi-classifier interactive learning (MCIL) method. In MCIL, multiple different classifiers first mimic several individuals, who have inconsistent cognitions of ambiguous emotions, and construct new ambiguous labels (the emotion probability distribution). Then, they are retrained with the new labels to interact with their cognitions. This procedure enables each classifier to learn better representations of ambiguous data from others, and further improves the recognition ability. The experiments on three benchmark corpora (MAS, IEMOCAP, and FAU-AIBO) demonstrate that MCIL does not only improve each classifier’s performance, but also raises their recognition consistency from moderate to substantial.
科研通智能强力驱动
Strongly Powered by AbleSci AI