已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Classifier Interactive Learning for Ambiguous Speech Emotion Recognition

话语 计算机科学 情绪识别 分类器(UML) 语音识别 人工智能 自然语言处理 机器学习
作者
Ying Zhou,Xuefeng Liang,Yu Gu,Yifei Yin,Longshan Yao
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 695-705 被引量:1
标识
DOI:10.1109/taslp.2022.3145287
摘要

In recent years, speech emotion recognition technology is of great significance in widespread applications such as call centers, social robots and health care. Thus, the speech emotion recognition has been attracted much attention in both industry and academic. Since emotions existing in an entire utterance may have varied probabilities, speech emotion is likely to be ambiguous, which poses great challenges to recognition tasks. However, previous studies commonly assigned a single-label or multi-label to each utterance in certain. Therefore, their algorithms result in low accuracies because of the inappropriate representation. Inspired by the optimally interacting theory, we address the ambiguous speech emotions by proposing a novel multi-classifier interactive learning (MCIL) method. In MCIL, multiple different classifiers first mimic several individuals, who have inconsistent cognitions of ambiguous emotions, and construct new ambiguous labels (the emotion probability distribution). Then, they are retrained with the new labels to interact with their cognitions. This procedure enables each classifier to learn better representations of ambiguous data from others, and further improves the recognition ability. The experiments on three benchmark corpora (MAS, IEMOCAP, and FAU-AIBO) demonstrate that MCIL does not only improve each classifier’s performance, but also raises their recognition consistency from moderate to substantial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
han发布了新的文献求助10
1秒前
4秒前
8秒前
9秒前
9秒前
moci123完成签到 ,获得积分10
10秒前
科研通AI5应助zzn采纳,获得10
12秒前
刺五加发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
和谐冰菱完成签到 ,获得积分10
12秒前
秋秋发布了新的文献求助10
13秒前
ywd发布了新的文献求助10
13秒前
倪浩驳回了iNk应助
13秒前
14秒前
14秒前
16秒前
无花果应助啊算法撒旦F采纳,获得10
17秒前
19秒前
19秒前
酷波er应助hygge采纳,获得10
22秒前
言辞完成签到,获得积分10
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
外向的斑马完成签到 ,获得积分10
28秒前
29秒前
FashionBoy应助冷酷夏烟采纳,获得10
29秒前
29秒前
31秒前
木木发布了新的文献求助10
31秒前
当年明月完成签到,获得积分10
31秒前
承序完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
tingting发布了新的文献求助10
35秒前
格子发布了新的文献求助10
35秒前
35秒前
overlord发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
40秒前
小马甲应助maybe豪采纳,获得10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225307
关于积分的说明 9762401
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759223
科研通“疑难数据库(出版商)”最低求助积分说明 735185