Multi-Classifier Interactive Learning for Ambiguous Speech Emotion Recognition

话语 计算机科学 情绪识别 分类器(UML) 语音识别 人工智能 自然语言处理 机器学习
作者
Ying Zhou,Xuefeng Liang,Yu Gu,Yifei Yin,Longshan Yao
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 695-705 被引量:1
标识
DOI:10.1109/taslp.2022.3145287
摘要

In recent years, speech emotion recognition technology is of great significance in widespread applications such as call centers, social robots and health care. Thus, the speech emotion recognition has been attracted much attention in both industry and academic. Since emotions existing in an entire utterance may have varied probabilities, speech emotion is likely to be ambiguous, which poses great challenges to recognition tasks. However, previous studies commonly assigned a single-label or multi-label to each utterance in certain. Therefore, their algorithms result in low accuracies because of the inappropriate representation. Inspired by the optimally interacting theory, we address the ambiguous speech emotions by proposing a novel multi-classifier interactive learning (MCIL) method. In MCIL, multiple different classifiers first mimic several individuals, who have inconsistent cognitions of ambiguous emotions, and construct new ambiguous labels (the emotion probability distribution). Then, they are retrained with the new labels to interact with their cognitions. This procedure enables each classifier to learn better representations of ambiguous data from others, and further improves the recognition ability. The experiments on three benchmark corpora (MAS, IEMOCAP, and FAU-AIBO) demonstrate that MCIL does not only improve each classifier’s performance, but also raises their recognition consistency from moderate to substantial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盒子年糕发布了新的文献求助10
1秒前
1秒前
顾己发布了新的文献求助10
2秒前
锦鲤禾完成签到,获得积分20
2秒前
2秒前
聪明小丸子完成签到,获得积分10
3秒前
bkagyin应助东东采纳,获得10
3秒前
3秒前
豆豆豆豆发布了新的文献求助10
4秒前
陶醉的大白完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
超帅高烽发布了新的文献求助30
5秒前
黄伊若完成签到 ,获得积分10
5秒前
优秀剑愁发布了新的文献求助10
5秒前
sustwanli完成签到,获得积分20
6秒前
xtinee完成签到,获得积分10
6秒前
脑洞疼应助liubo采纳,获得10
7秒前
独特寒安完成签到,获得积分10
7秒前
叶问儿完成签到,获得积分10
7秒前
汉堡包应助seven采纳,获得10
7秒前
宁异勿同完成签到 ,获得积分10
7秒前
Ww完成签到,获得积分10
8秒前
Grinder发布了新的文献求助10
8秒前
Yurole完成签到,获得积分10
8秒前
高贵土豆完成签到,获得积分10
9秒前
科研通AI2S应助yk1314采纳,获得10
9秒前
XiYang发布了新的文献求助30
9秒前
Morch2021完成签到,获得积分10
9秒前
dogontree完成签到,获得积分10
10秒前
成硕完成签到,获得积分10
10秒前
丘比特应助是草莓采纳,获得10
10秒前
顽固分子完成签到 ,获得积分10
10秒前
11秒前
百杜完成签到,获得积分20
11秒前
12秒前
万能图书馆应助xiaodong采纳,获得10
13秒前
彭于晏应助GLZ6984采纳,获得10
13秒前
cgavskobe完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151225
求助须知:如何正确求助?哪些是违规求助? 2802672
关于积分的说明 7849833
捐赠科研通 2460115
什么是DOI,文献DOI怎么找? 1309560
科研通“疑难数据库(出版商)”最低求助积分说明 628956
版权声明 601760