消散
材料科学
热的
电子设备和系统的热管理
接口(物质)
工程物理
能量(信号处理)
光电子学
核工程
复合材料
机械工程
热力学
物理
工程类
量子力学
毛细管作用
毛细管数
作者
Xiangliang Zeng,Xiaoliang Zeng,Jianfeng Fan,Junwei Li,Zhenyu Wang,Rong Sun,Linlin Ren,Xinnian Xia
出处
期刊:ACS materials letters
[American Chemical Society]
日期:2022-04-07
卷期号:4 (5): 874-881
被引量:19
标识
DOI:10.1021/acsmaterialslett.2c00132
摘要
Thermal interface materials (TIMs) that function as reducing the contact thermal resistance between chip and cooling solution are indispensable in modern electronics. The development of electronics toward reduced feature size and being wearable has led to the need for new TIMs with both heat dissipation and high energy dissipation. However, the strong coupling between storage modulus and energy dissipation makes it difficult for TIMs to acquire these two properties simultaneously. Here, we propose an anneal-induced disentanglement strategy to obtain excellent heat dissipation properties of TIMs in a vibration environment, which is difficult for traditional TIMs. The dissociation of partially introduced dynamic covalent bonds in the polymer matrix releases the trapped entanglement and reduces storage modulus during the annealing process. Using prototypical dynamic thioester cross-linked polybutadiene adducted with maleic anhydride (PAMA), we achieved thioester-TIMs with tan δ higher than 0.94 in the frequency range of daily life, which is 4.7 times higher than that of traditional TIMs. In the actual application of 10 Hz vibration frequency, no temperature fluctuations (∼0 °C) are detected when using the thioester-TIMs chips, while the use of traditional TIMs show fluctuations of ∼3 °C. Such excellent performance creates new opportunities for TIMs design, and addresses current limitations in TIMs for flexible electronic packaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI