Health Assessment of Rotating Equipment With Unseen Conditions Using Adversarial Domain Generalization Toward Self-Supervised Regularization Learning

正规化(语言学) 分类器(UML) 计算机科学 对抗制 人工智能 机器学习 试验数据 最大化 领域(数学分析) 数学 数学优化 数学分析 程序设计语言
作者
Jichao Zhuang,Minping Jia,Yifei Ding,Xiaoli Zhao
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 4675-4685 被引量:10
标识
DOI:10.1109/tmech.2022.3163289
摘要

Traditional health assessment models work well under the assumption that the test and training samples obey a similar distribution. However, it is practically impossible to eliminate domain shifts between different tasks. Thus, most work tries to establish a data-driven approach via domain adaptation to accomplish transfer learning between different operating conditions. Sufficient target data are needed to participate in the training, which may not normally be available due to most working scenarios being unseen. An adversarial domain generalization framework with regularization learning (ADGR) is proposed for the health assessment to mine latent domains. Also, the latent domain is expanded to the unseen domain as possible. More specifically, the diversity of the sample distribution is augmented by adversarial training and the maximization of the domain discrepancy between the latent and source domains. Meanwhile, self-supervised interdomain regularization and semantical consistent regularization are proposed to mitigate the feature drift of the domain classifier and semantic divergence between source and latent domains. The case study shows that the ADGR-based health assessment approach achieves competitive prediction accuracy under unseen conditions, demonstrating its potential as a diagnostic solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陌路完成签到,获得积分10
1秒前
善学以致用应助leon采纳,获得30
1秒前
2秒前
斯文败类应助嘻嘻采纳,获得10
2秒前
科研通AI5应助小只bb采纳,获得30
2秒前
yyyy发布了新的文献求助10
2秒前
2023AKY完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
彭于晏应助惠惠采纳,获得10
5秒前
风魂剑主完成签到,获得积分10
6秒前
yryzst9899发布了新的文献求助10
6秒前
7秒前
飘逸小笼包完成签到,获得积分10
7秒前
科研小郑完成签到,获得积分10
7秒前
CipherSage应助熊boy采纳,获得10
7秒前
XXGG完成签到 ,获得积分10
8秒前
大个应助舒心赛凤采纳,获得10
8秒前
晨曦发布了新的文献求助10
9秒前
9秒前
ff0110完成签到,获得积分10
10秒前
星辰大海应助苹果萧采纳,获得10
10秒前
徐徐完成签到,获得积分10
10秒前
哈哈哈哈发布了新的文献求助10
11秒前
请叫我风吹麦浪应助yoon采纳,获得10
11秒前
认真的青柠完成签到,获得积分10
11秒前
bbanshan完成签到,获得积分10
11秒前
卫生纸发布了新的文献求助10
11秒前
11秒前
12秒前
奔奔完成签到,获得积分10
12秒前
脑洞疼应助李来仪采纳,获得10
13秒前
13秒前
13秒前
demonox发布了新的文献求助10
13秒前
jbhb发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794