Health Assessment of Rotating Equipment With Unseen Conditions Using Adversarial Domain Generalization Toward Self-Supervised Regularization Learning

正规化(语言学) 分类器(UML) 计算机科学 对抗制 人工智能 机器学习 试验数据 最大化 领域(数学分析) 数学 数学优化 数学分析 程序设计语言
作者
Jichao Zhuang,Minping Jia,Yifei Ding,Xiaoli Zhao
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 4675-4685 被引量:10
标识
DOI:10.1109/tmech.2022.3163289
摘要

Traditional health assessment models work well under the assumption that the test and training samples obey a similar distribution. However, it is practically impossible to eliminate domain shifts between different tasks. Thus, most work tries to establish a data-driven approach via domain adaptation to accomplish transfer learning between different operating conditions. Sufficient target data are needed to participate in the training, which may not normally be available due to most working scenarios being unseen. An adversarial domain generalization framework with regularization learning (ADGR) is proposed for the health assessment to mine latent domains. Also, the latent domain is expanded to the unseen domain as possible. More specifically, the diversity of the sample distribution is augmented by adversarial training and the maximization of the domain discrepancy between the latent and source domains. Meanwhile, self-supervised interdomain regularization and semantical consistent regularization are proposed to mitigate the feature drift of the domain classifier and semantic divergence between source and latent domains. The case study shows that the ADGR-based health assessment approach achieves competitive prediction accuracy under unseen conditions, demonstrating its potential as a diagnostic solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无心的笑蓝完成签到,获得积分20
刚刚
2秒前
桃也雾漫漫完成签到 ,获得积分10
3秒前
苹果花发布了新的文献求助10
5秒前
科研通AI2S应助里工采纳,获得10
8秒前
刘玲完成签到 ,获得积分10
8秒前
顾矜应助猪猪hero采纳,获得10
9秒前
10秒前
吴静茹完成签到,获得积分10
11秒前
桐桐应助Rainie采纳,获得50
12秒前
桐桐应助一自文又欠采纳,获得10
13秒前
任性的之卉完成签到,获得积分10
13秒前
苹果花完成签到,获得积分10
13秒前
fanhuam发布了新的文献求助20
15秒前
15秒前
TJTerrence完成签到,获得积分10
15秒前
米尔的猫发布了新的文献求助10
16秒前
17秒前
21秒前
21秒前
Denmark发布了新的文献求助10
22秒前
今后应助谦让的振家采纳,获得10
24秒前
王卫完成签到,获得积分10
25秒前
26秒前
Ruppa发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
mingli的tau给mingli的tau的求助进行了留言
29秒前
30秒前
新起点发布了新的文献求助10
31秒前
羞涩的渊思应助俏皮天德采纳,获得50
31秒前
安徒发布了新的文献求助10
32秒前
张大泽同学完成签到 ,获得积分10
32秒前
33秒前
充电宝应助咻咻采纳,获得10
35秒前
东北雨姐发布了新的文献求助10
36秒前
吨吨发布了新的文献求助10
36秒前
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963699
求助须知:如何正确求助?哪些是违规求助? 3509612
关于积分的说明 11147847
捐赠科研通 3243109
什么是DOI,文献DOI怎么找? 1792047
邀请新用户注册赠送积分活动 873390
科研通“疑难数据库(出版商)”最低求助积分说明 803788