Machine learning predicts and optimizes hydrothermal liquefaction of biomass

水热液化 生物量(生态学) 生物炼制 液化 热液循环 产量(工程) 环境科学 工艺工程 相关系数 碳纤维 制浆造纸工业 计算机科学 化学 机器学习 废物管理 化学工程 工程类 生物燃料 材料科学 算法 地质学 有机化学 冶金 复合数 海洋学
作者
Alireza Shafizadeh,Hossein Shahbeig,Mohammad Hossein Nadian,Hossein Mobli,Majid Dowlati,Vijai Kumar Gupta,Wanxi Peng,Su Shiung Lam,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:445: 136579-136579 被引量:118
标识
DOI:10.1016/j.cej.2022.136579
摘要

The hydrothermal liquefaction process has recently attracted more attention in biorefinery design and implementation because of its capability of handling various wet biomass feedstocks. However, measuring the quantitative and qualitative characteristics of hydrothermal liquefaction (by)products is challenging because of the need for time-consuming and cost-intensive experiments. Machine learning technology can cope with this issue thanks to its ability to learn from past datasets and mechanisms. Hence, machine learning was applied herein to quantitatively and qualitatively characterize hydrothermal liquefaction (by)products based on biomass composition and reaction conditions. The data patterns compiled from the published literature were used to develop a universal machine learning model applicable to a wide range of biomass feedstocks and reaction conditions. The collected data were statistically analyzed and mechanistically discussed. Among the four machine learning models considered, Gaussian process regression could provide the highest accuracy, with a correlation coefficient higher than 0.926 and a mean absolute error lower than 0.031. An effort was also made to maximize biocrude oil quantity and quality and minimize byproducts quantity using the objective functions developed by the selected model. The optimal biocrude oil yield (48.7–53.5%) was obtained when the carbon, hydrogen, nitrogen, oxygen, sulfur, and ash contents of biomass were in the range of 40.9–48.3%, 9.72–9.80%, 11.9–13.6%, 15.2–15.6%, 0.0–0.94%, and 0.0–2.92%, respectively. The optimal operating conditions were: operating dry matter = 31.4–33.0%, temperature = 394–400 °C, reaction time = 5–9 min, and pressure = 30.0–35.6 MPa. An easy-to-use software package was developed based on the selected machine learning model to pave the way for bypassing unnecessary lengthy and costly experiments without requiring extensive machine learning knowledge. The present study highlights the vast potential of machine learning for modeling biomass hydrothermal liquefaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zhuzi采纳,获得10
刚刚
孙夕然完成签到,获得积分10
1秒前
MLL发布了新的文献求助10
1秒前
2秒前
霸气的念云完成签到,获得积分10
2秒前
萝卜干完成签到,获得积分10
2秒前
清辉夜凝发布了新的文献求助20
2秒前
脑洞疼应助jjdgangan采纳,获得10
3秒前
科研通AI2S应助冀君赏采纳,获得10
4秒前
5秒前
5秒前
banksy发布了新的文献求助10
5秒前
情怀应助心灵手巧采纳,获得10
6秒前
姜姜戈戈完成签到 ,获得积分10
7秒前
NexusExplorer应助....采纳,获得10
7秒前
楠兮完成签到,获得积分10
7秒前
再慕完成签到,获得积分10
8秒前
思源应助酷盖采纳,获得10
9秒前
9秒前
Fjj完成签到,获得积分10
9秒前
9秒前
9秒前
英姑应助嘎嘣脆采纳,获得10
10秒前
Shale完成签到,获得积分10
10秒前
妮妮完成签到 ,获得积分10
10秒前
咎星完成签到,获得积分10
10秒前
11秒前
Lijia_YAO发布了新的文献求助10
11秒前
OK完成签到,获得积分10
11秒前
11秒前
友好慕卉发布了新的文献求助10
12秒前
lxl发布了新的文献求助10
12秒前
Hello应助在望采纳,获得10
12秒前
yeti完成签到,获得积分10
12秒前
Surge完成签到,获得积分10
12秒前
roselau完成签到,获得积分10
12秒前
liuting完成签到,获得积分10
13秒前
13秒前
13秒前
Owen应助tangh采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355