Machine learning predicts and optimizes hydrothermal liquefaction of biomass

水热液化 生物量(生态学) 生物炼制 液化 热液循环 产量(工程) 环境科学 工艺工程 相关系数 碳纤维 制浆造纸工业 计算机科学 化学 机器学习 废物管理 化学工程 工程类 生物燃料 材料科学 算法 地质学 有机化学 冶金 复合数 海洋学
作者
Alireza Shafizadeh,Hossein Shahbeig,Mohammad Hossein Nadian,Hossein Mobli,Majid Dowlati,Vijai Kumar Gupta,Wanxi Peng,Su Shiung Lam,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:445: 136579-136579 被引量:118
标识
DOI:10.1016/j.cej.2022.136579
摘要

The hydrothermal liquefaction process has recently attracted more attention in biorefinery design and implementation because of its capability of handling various wet biomass feedstocks. However, measuring the quantitative and qualitative characteristics of hydrothermal liquefaction (by)products is challenging because of the need for time-consuming and cost-intensive experiments. Machine learning technology can cope with this issue thanks to its ability to learn from past datasets and mechanisms. Hence, machine learning was applied herein to quantitatively and qualitatively characterize hydrothermal liquefaction (by)products based on biomass composition and reaction conditions. The data patterns compiled from the published literature were used to develop a universal machine learning model applicable to a wide range of biomass feedstocks and reaction conditions. The collected data were statistically analyzed and mechanistically discussed. Among the four machine learning models considered, Gaussian process regression could provide the highest accuracy, with a correlation coefficient higher than 0.926 and a mean absolute error lower than 0.031. An effort was also made to maximize biocrude oil quantity and quality and minimize byproducts quantity using the objective functions developed by the selected model. The optimal biocrude oil yield (48.7–53.5%) was obtained when the carbon, hydrogen, nitrogen, oxygen, sulfur, and ash contents of biomass were in the range of 40.9–48.3%, 9.72–9.80%, 11.9–13.6%, 15.2–15.6%, 0.0–0.94%, and 0.0–2.92%, respectively. The optimal operating conditions were: operating dry matter = 31.4–33.0%, temperature = 394–400 °C, reaction time = 5–9 min, and pressure = 30.0–35.6 MPa. An easy-to-use software package was developed based on the selected machine learning model to pave the way for bypassing unnecessary lengthy and costly experiments without requiring extensive machine learning knowledge. The present study highlights the vast potential of machine learning for modeling biomass hydrothermal liquefaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海盗船长完成签到,获得积分10
刚刚
等待寄云完成签到 ,获得积分10
刚刚
酷波er应助王冉冉采纳,获得10
1秒前
lcjynwe完成签到,获得积分10
2秒前
新奇完成签到 ,获得积分10
2秒前
Misty_发布了新的文献求助10
2秒前
iNk应助不会取名字采纳,获得20
2秒前
Orange应助Hannes采纳,获得10
2秒前
4秒前
多多少少忖测的情完成签到,获得积分10
4秒前
小马甲应助lx采纳,获得10
4秒前
5秒前
阔达冰兰发布了新的文献求助10
5秒前
GAO完成签到,获得积分10
5秒前
yy发布了新的文献求助10
6秒前
6秒前
6秒前
奋斗冬萱完成签到,获得积分10
6秒前
康园完成签到,获得积分10
7秒前
活泼的面包完成签到,获得积分10
9秒前
123456完成签到,获得积分10
10秒前
重要谷冬完成签到,获得积分10
10秒前
深情丸子发布了新的文献求助10
10秒前
10秒前
杰瑞完成签到,获得积分10
12秒前
12秒前
ding应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
fang应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
李小鑫吖发布了新的文献求助10
13秒前
ding应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
Zoe应助科研通管家采纳,获得50
14秒前
个性元枫应助科研通管家采纳,获得10
14秒前
14秒前
贰鸟应助科研通管家采纳,获得20
14秒前
华仔应助Misty_采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048