Machine learning predicts and optimizes hydrothermal liquefaction of biomass

水热液化 生物量(生态学) 生物炼制 液化 热液循环 产量(工程) 环境科学 工艺工程 相关系数 碳纤维 制浆造纸工业 计算机科学 化学 机器学习 废物管理 化学工程 工程类 生物燃料 材料科学 算法 地质学 有机化学 复合数 冶金 海洋学
作者
Alireza Shafizadeh,Hossein Shahbeig,Mohammad Hossein Nadian,Hossein Mobli,Majid Dowlati,Vijai Kumar Gupta,Wanxi Peng,Su Shiung Lam,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:445: 136579-136579 被引量:167
标识
DOI:10.1016/j.cej.2022.136579
摘要

The hydrothermal liquefaction process has recently attracted more attention in biorefinery design and implementation because of its capability of handling various wet biomass feedstocks. However, measuring the quantitative and qualitative characteristics of hydrothermal liquefaction (by)products is challenging because of the need for time-consuming and cost-intensive experiments. Machine learning technology can cope with this issue thanks to its ability to learn from past datasets and mechanisms. Hence, machine learning was applied herein to quantitatively and qualitatively characterize hydrothermal liquefaction (by)products based on biomass composition and reaction conditions. The data patterns compiled from the published literature were used to develop a universal machine learning model applicable to a wide range of biomass feedstocks and reaction conditions. The collected data were statistically analyzed and mechanistically discussed. Among the four machine learning models considered, Gaussian process regression could provide the highest accuracy, with a correlation coefficient higher than 0.926 and a mean absolute error lower than 0.031. An effort was also made to maximize biocrude oil quantity and quality and minimize byproducts quantity using the objective functions developed by the selected model. The optimal biocrude oil yield (48.7–53.5%) was obtained when the carbon, hydrogen, nitrogen, oxygen, sulfur, and ash contents of biomass were in the range of 40.9–48.3%, 9.72–9.80%, 11.9–13.6%, 15.2–15.6%, 0.0–0.94%, and 0.0–2.92%, respectively. The optimal operating conditions were: operating dry matter = 31.4–33.0%, temperature = 394–400 °C, reaction time = 5–9 min, and pressure = 30.0–35.6 MPa. An easy-to-use software package was developed based on the selected machine learning model to pave the way for bypassing unnecessary lengthy and costly experiments without requiring extensive machine learning knowledge. The present study highlights the vast potential of machine learning for modeling biomass hydrothermal liquefaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QING完成签到,获得积分20
刚刚
刚刚
小孙的微信完成签到,获得积分10
1秒前
ziyue驳回了Jared应助
1秒前
勤奋初之发布了新的文献求助30
1秒前
youshower完成签到,获得积分10
2秒前
小鱼发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
口香糖探长完成签到 ,获得积分10
4秒前
ding应助开朗寻凝采纳,获得10
4秒前
4秒前
小溪苏完成签到 ,获得积分10
4秒前
4秒前
初染发布了新的文献求助10
4秒前
yznfly应助周小丁采纳,获得20
4秒前
吭吭菜菜完成签到,获得积分10
5秒前
6秒前
上官若男应助dezhen1991采纳,获得10
6秒前
时s发布了新的文献求助10
7秒前
YJ发布了新的文献求助10
7秒前
kk发布了新的文献求助20
7秒前
xiaohan关注了科研通微信公众号
7秒前
8秒前
九三发布了新的文献求助10
9秒前
慕青应助ZDM6094采纳,获得10
9秒前
复杂的茉莉完成签到,获得积分10
10秒前
林新宇发布了新的文献求助10
11秒前
李健应助rtx00采纳,获得10
12秒前
失眠亦寒发布了新的文献求助10
12秒前
YJ完成签到,获得积分20
13秒前
Akim应助haiwei采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
英姑应助Fighter采纳,获得10
13秒前
可靠的冰萍完成签到 ,获得积分10
14秒前
Emy完成签到 ,获得积分10
14秒前
jing完成签到,获得积分20
14秒前
懦弱的安珊完成签到 ,获得积分10
14秒前
JAYGOD完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525447
求助须知:如何正确求助?哪些是违规求助? 4615623
关于积分的说明 14549371
捐赠科研通 4553692
什么是DOI,文献DOI怎么找? 2495468
邀请新用户注册赠送积分活动 1475991
关于科研通互助平台的介绍 1447742