亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning predicts and optimizes hydrothermal liquefaction of biomass

水热液化 生物量(生态学) 生物炼制 液化 热液循环 产量(工程) 环境科学 工艺工程 相关系数 碳纤维 制浆造纸工业 计算机科学 化学 机器学习 废物管理 化学工程 工程类 生物燃料 材料科学 算法 地质学 有机化学 冶金 复合数 海洋学
作者
Alireza Shafizadeh,Hossein Shahbeig,Mohammad Hossein Nadian,Hossein Mobli,Majid Dowlati,Vijai Kumar Gupta,Wanxi Peng,Su Shiung Lam,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:445: 136579-136579 被引量:111
标识
DOI:10.1016/j.cej.2022.136579
摘要

The hydrothermal liquefaction process has recently attracted more attention in biorefinery design and implementation because of its capability of handling various wet biomass feedstocks. However, measuring the quantitative and qualitative characteristics of hydrothermal liquefaction (by)products is challenging because of the need for time-consuming and cost-intensive experiments. Machine learning technology can cope with this issue thanks to its ability to learn from past datasets and mechanisms. Hence, machine learning was applied herein to quantitatively and qualitatively characterize hydrothermal liquefaction (by)products based on biomass composition and reaction conditions. The data patterns compiled from the published literature were used to develop a universal machine learning model applicable to a wide range of biomass feedstocks and reaction conditions. The collected data were statistically analyzed and mechanistically discussed. Among the four machine learning models considered, Gaussian process regression could provide the highest accuracy, with a correlation coefficient higher than 0.926 and a mean absolute error lower than 0.031. An effort was also made to maximize biocrude oil quantity and quality and minimize byproducts quantity using the objective functions developed by the selected model. The optimal biocrude oil yield (48.7–53.5%) was obtained when the carbon, hydrogen, nitrogen, oxygen, sulfur, and ash contents of biomass were in the range of 40.9–48.3%, 9.72–9.80%, 11.9–13.6%, 15.2–15.6%, 0.0–0.94%, and 0.0–2.92%, respectively. The optimal operating conditions were: operating dry matter = 31.4–33.0%, temperature = 394–400 °C, reaction time = 5–9 min, and pressure = 30.0–35.6 MPa. An easy-to-use software package was developed based on the selected machine learning model to pave the way for bypassing unnecessary lengthy and costly experiments without requiring extensive machine learning knowledge. The present study highlights the vast potential of machine learning for modeling biomass hydrothermal liquefaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我有乖乖吃饭完成签到,获得积分20
刚刚
小蘑菇应助我有乖乖吃饭采纳,获得60
9秒前
12秒前
kk发布了新的文献求助10
17秒前
kk完成签到,获得积分10
24秒前
oleskarabach完成签到,获得积分20
35秒前
41秒前
泡面小猪发布了新的文献求助10
46秒前
1分钟前
芒果完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
呜呜老婆完成签到 ,获得积分10
1分钟前
可靠的寒风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
难过的长颈鹿完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
wanci应助欢呼的寻双采纳,获得10
2分钟前
3分钟前
ONION发布了新的文献求助10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
jimmy_bytheway完成签到,获得积分0
4分钟前
4分钟前
4分钟前
半。。发布了新的文献求助10
5分钟前
5分钟前
半。。完成签到,获得积分10
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
price发布了新的文献求助10
5分钟前
科研通AI2S应助xiaoshoujun采纳,获得10
5分钟前
price完成签到 ,获得积分20
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989