已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning predicts and optimizes hydrothermal liquefaction of biomass

水热液化 生物量(生态学) 生物炼制 液化 热液循环 产量(工程) 环境科学 工艺工程 相关系数 碳纤维 制浆造纸工业 计算机科学 化学 机器学习 废物管理 化学工程 工程类 生物燃料 材料科学 算法 地质学 有机化学 复合数 冶金 海洋学
作者
Alireza Shafizadeh,Hossein Shahbeig,Mohammad Hossein Nadian,Hossein Mobli,Majid Dowlati,Vijai Kumar Gupta,Wanxi Peng,Su Shiung Lam,Meisam Tabatabaei,Mortaza Aghbashlo
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:445: 136579-136579 被引量:167
标识
DOI:10.1016/j.cej.2022.136579
摘要

The hydrothermal liquefaction process has recently attracted more attention in biorefinery design and implementation because of its capability of handling various wet biomass feedstocks. However, measuring the quantitative and qualitative characteristics of hydrothermal liquefaction (by)products is challenging because of the need for time-consuming and cost-intensive experiments. Machine learning technology can cope with this issue thanks to its ability to learn from past datasets and mechanisms. Hence, machine learning was applied herein to quantitatively and qualitatively characterize hydrothermal liquefaction (by)products based on biomass composition and reaction conditions. The data patterns compiled from the published literature were used to develop a universal machine learning model applicable to a wide range of biomass feedstocks and reaction conditions. The collected data were statistically analyzed and mechanistically discussed. Among the four machine learning models considered, Gaussian process regression could provide the highest accuracy, with a correlation coefficient higher than 0.926 and a mean absolute error lower than 0.031. An effort was also made to maximize biocrude oil quantity and quality and minimize byproducts quantity using the objective functions developed by the selected model. The optimal biocrude oil yield (48.7–53.5%) was obtained when the carbon, hydrogen, nitrogen, oxygen, sulfur, and ash contents of biomass were in the range of 40.9–48.3%, 9.72–9.80%, 11.9–13.6%, 15.2–15.6%, 0.0–0.94%, and 0.0–2.92%, respectively. The optimal operating conditions were: operating dry matter = 31.4–33.0%, temperature = 394–400 °C, reaction time = 5–9 min, and pressure = 30.0–35.6 MPa. An easy-to-use software package was developed based on the selected machine learning model to pave the way for bypassing unnecessary lengthy and costly experiments without requiring extensive machine learning knowledge. The present study highlights the vast potential of machine learning for modeling biomass hydrothermal liquefaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
追风少年发布了新的文献求助10
1秒前
上官若男应助刘雄丽采纳,获得10
2秒前
2秒前
克劳修斯完成签到 ,获得积分10
3秒前
烟花应助wlei采纳,获得10
3秒前
哈比人linling完成签到,获得积分10
5秒前
山野有雾都完成签到 ,获得积分20
7秒前
Zxc发布了新的文献求助10
7秒前
大模型应助萱萱采纳,获得10
9秒前
Zxc完成签到,获得积分10
12秒前
在水一方应助Wenyilong采纳,获得10
13秒前
姚姚完成签到 ,获得积分10
13秒前
小碗完成签到 ,获得积分0
14秒前
kw98完成签到 ,获得积分10
15秒前
彭于晏应助Fiona采纳,获得10
15秒前
宁地啊完成签到 ,获得积分10
16秒前
Swear完成签到 ,获得积分10
16秒前
英姑应助undertaker采纳,获得10
18秒前
18秒前
大碗完成签到 ,获得积分10
18秒前
yalbe完成签到 ,获得积分10
19秒前
科目三应助纯真沛儿采纳,获得10
19秒前
刘雄丽发布了新的文献求助10
21秒前
顺利晓蓝完成签到,获得积分10
21秒前
22秒前
undertaker发布了新的文献求助10
24秒前
25秒前
etzel发布了新的文献求助10
27秒前
Aman完成签到,获得积分10
28秒前
小蘑菇应助yjx采纳,获得10
28秒前
29秒前
嗯嗯完成签到 ,获得积分10
29秒前
wqa1472完成签到,获得积分10
30秒前
科研兵完成签到 ,获得积分10
31秒前
31秒前
愉悦发布了新的文献求助30
31秒前
孤独莹发布了新的文献求助10
33秒前
undertaker完成签到,获得积分10
33秒前
背后晓兰完成签到 ,获得积分20
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642