Reversible Data Hiding by Using CNN Prediction and Adaptive Embedding.

计算机科学 嵌入 信息隐藏 背景(考古学) 人工智能 卷积神经网络 像素 失真(音乐) 利用 领域(数学) 模式识别(心理学) 图像(数学) 算法
作者
Runwen Hu,Shijun Xiang
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tpami.2021.3131250
摘要

In the field of reversible data hiding (RDH), how to predict an image and embed a message into the image with smaller distortion are two important aspects. In this paper, we propose a novel and efficient RDH method by innovating an intelligent predictor and an adaptive embedding way. In the prediction stage, we first constructed a convolutional neural network (CNN) based predictor by reasonably dividing an image into four parts to exploit more neighboring pixels as the context for improving the prediction performance. Compared with existing predictors, the proposed CNN predictor can use more neighboring pixels for the prediction by exploiting its multi-receptive fields and global optimization capacities. In the embedding stage, we also developed a prediction-error-ordering (PEO) based adaptive embedding strategy, which can better adapt image content and thus efficiently reduce the embedding distortion by elaborately and luminously applying background complexity to select and pair those smaller prediction errors for data hiding. With the proposed CNN prediction and embedding ways, the RDH method presented in this paper provides satisfactory results in improving the visual quality of data hidden images. Extensive experimental results have shown that the proposed RDH method is superior to those existing state-of-the-art works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
esyncoms完成签到,获得积分10
1秒前
刘一三完成签到 ,获得积分10
1秒前
科研通AI5应助会飞的鱼161采纳,获得10
2秒前
97b1完成签到,获得积分10
2秒前
林远山发布了新的文献求助10
3秒前
852应助体贴的小天鹅采纳,获得10
3秒前
Hello应助合适小刺猬采纳,获得10
3秒前
Lucas应助制冷剂采纳,获得10
4秒前
yrt发布了新的文献求助30
4秒前
晶晶关注了科研通微信公众号
4秒前
英俊的铭应助文光采纳,获得10
4秒前
5秒前
苦逼的科研人完成签到,获得积分10
5秒前
东木雨发布了新的文献求助10
5秒前
6秒前
安寒完成签到,获得积分10
6秒前
6秒前
天天快乐应助小吴采纳,获得10
6秒前
小杨同学发布了新的文献求助10
7秒前
Iris发布了新的文献求助10
7秒前
7秒前
kingwill应助科研小柴采纳,获得20
7秒前
8秒前
Hello应助Wang Mu采纳,获得10
8秒前
sinal完成签到,获得积分10
8秒前
8秒前
9秒前
深情安青应助鱼咬羊采纳,获得10
9秒前
Jasper完成签到,获得积分10
9秒前
zzz完成签到 ,获得积分10
9秒前
汉堡包应助zzzzz采纳,获得20
10秒前
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
Zn应助科研通管家采纳,获得10
11秒前
轻松水瑶应助科研通管家采纳,获得20
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546764
求助须知:如何正确求助?哪些是违规求助? 3123808
关于积分的说明 9356884
捐赠科研通 2822427
什么是DOI,文献DOI怎么找? 1551441
邀请新用户注册赠送积分活动 723417
科研通“疑难数据库(出版商)”最低求助积分说明 713756