Edge Server Deployment for Health Monitoring With Reinforcement Learning in Internet of Medical Things

软件部署 计算机科学 云计算 边缘计算 能源消耗 互联网 强化学习 分布式计算 服务器 延迟(音频) 计算机网络 人工智能 电信 操作系统 工程类 电气工程
作者
Hanzhi Yan,Muhammad Bilal,Xiaolong Xu,S. Vimal
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tcss.2022.3161996
摘要

The Internet of Medical Things (IoMT) has recently gained a lot of interest in the health care industry. IoMT enables real-time and omnipresent monitoring of a patient's health status, resulting in massive amounts of medical data being generated. The centralized massive data processing places enormous strain on the typical cloud computing, rendering it incapable of supporting a variety of real-time health care applications. Therefore, edge computing that moves application programs and data processing from central infrastructure to the edge nodes has attracted wide attention. However, adopting existing edge server (ES) deployment strategies for IoMT is not suitable due to the decentralized and high real-time service requirements of IoMT systems. In particular, traditional ES deployment strategies in IoMT system confront major load imbalance across ESs, latency issues, and energy consumption concerns. To address these challenges, a deployment strategy of ESs based on the state-action-reward-state-action (SARSA) learning, named ESL, is designed. Specifically, ESs are quantified by evaluating the silhouette coefficient (SC) and the sum of squared errors. Then, through fuzzy C-means (FCM) algorithm, the preliminary division of health monitoring units (HMUs) and the initial locations of ESs are obtained. Finally, SARSA learning is adopted to determine the deployment of ESs. Furthermore, extensive experiments and analyses confirm that ESL achieves the core objective of optimizing load balancing among ESs while also optimizing request-response latency and request processing energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Su发布了新的文献求助10
刚刚
1秒前
hugeng完成签到,获得积分10
4秒前
韦恩发布了新的文献求助10
4秒前
7秒前
世间安得双全法完成签到,获得积分0
8秒前
9秒前
nan完成签到,获得积分10
10秒前
11秒前
hkh发布了新的文献求助10
11秒前
天天快乐应助小美爱科研采纳,获得10
12秒前
12秒前
BIGDUCK发布了新的文献求助10
14秒前
韦恩完成签到,获得积分20
14秒前
赘婿应助Su采纳,获得10
15秒前
16秒前
16秒前
进击的娇娇完成签到,获得积分10
17秒前
18秒前
潮哈哈耶发布了新的文献求助30
18秒前
温婉的镜子完成签到,获得积分20
18秒前
19秒前
情怀应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Grayball应助科研通管家采纳,获得10
19秒前
劲秉应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
20秒前
SICHEN应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得30
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
美好乐松应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
美好乐松应助科研通管家采纳,获得10
20秒前
SICHEN应助科研通管家采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672729
求助须知:如何正确求助?哪些是违规求助? 3228865
关于积分的说明 9782382
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610797
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199