ES-Net: Efficient Scale-Aware Network for Tiny Defect Detection

计算机科学 特征(语言学) 棱锥(几何) 人工智能 过程(计算) 领域(数学) 比例(比率) 模式识别(心理学) 特征提取 计算机视觉 物理 哲学 光学 操作系统 量子力学 纯数学 语言学 数学
作者
Xuyi Yu,Wentao Lyu,Di Zhou,Chengqun Wang,Weiqiang Xu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:79
标识
DOI:10.1109/tim.2022.3168897
摘要

Defect detection is to locate and classify the possible defects in an image, which plays a key role in the quality inspection link in the manufacturing process of industrial products. Defects in industrial products are generally very small and extremely uneven in scale, resulting in poor detection results. Therefore, we propose an efficient scale-aware network (ES-Net) to improve the effect of defect detection. By addressing the information loss of tiny targets and the mismatch between the receptive field of detection head and the scale of targets, ES-Net improves the overall defect detection effect, especially for tiny defects. Considering that existing works directly use an integrated feature to enhance features at all levels, it may cause confusion in the direction of network optimization. Therefore, we propose the aggregated feature guidance module (AFGM), which first performs efficient cascading fusion of multi-level features to filter cross-layer conflicts. Then the split and aggregation enhancement (SAE) module is designed to further optimize the integrated feature map, and the result is used to guide the shallow features. Moreover, we also introduce the multi-receptive field fusion (MFF) module to generate multi-receptive field information to supplement the shallow features after dimensionality reduction. The efficient stair pyramid (ESP) is a further improvement of feature pyramid network (FPN)-based network. In particular, we propose the dynamic scale-aware head (DSH) in shallow detection layer, which can adaptively select the best detection receptive field according to different scales of targets, thereby improving the detection performance of tiny targets. Extensive experimental results on Aliyun Tianchi fabric dataset (76.2% mAP), NEU-DET (79.1% mAP), and printed circuit board (PCB) defect dataset of Peking University (97.5% mAP) demonstrate the proposed ES-Net achieves competitive results compared to the state-of-the-art (SOTA) methods. Moreover, the high efficiency of ES-Net makes it more applicable in scenarios with high real-time requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
流觞曲水发布了新的文献求助10
1秒前
1秒前
1Yer6完成签到 ,获得积分10
1秒前
ada发布了新的文献求助10
2秒前
共享精神应助小小科研人采纳,获得10
3秒前
Sylvia完成签到,获得积分10
3秒前
00完成签到,获得积分20
5秒前
务实的菓完成签到 ,获得积分10
5秒前
吕健发布了新的文献求助10
6秒前
6秒前
果心纯完成签到,获得积分10
7秒前
7秒前
猜猜关注了科研通微信公众号
8秒前
Lin发布了新的文献求助10
8秒前
9秒前
自觉的火龙果完成签到,获得积分10
9秒前
十三同学完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
Lin完成签到,获得积分10
13秒前
样样子发布了新的文献求助10
14秒前
ll200207发布了新的文献求助10
16秒前
香蕉觅云应助奮斗采纳,获得10
17秒前
今后应助keyan采纳,获得10
17秒前
18秒前
18秒前
打打应助夜阑听风雨采纳,获得10
18秒前
00发布了新的文献求助10
19秒前
芝士完成签到 ,获得积分10
20秒前
uuh完成签到,获得积分10
20秒前
仁者完成签到,获得积分10
21秒前
可爱的函函应助达叔采纳,获得10
22秒前
22秒前
22秒前
25秒前
26秒前
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769645
求助须知:如何正确求助?哪些是违规求助? 3314713
关于积分的说明 10173349
捐赠科研通 3030002
什么是DOI,文献DOI怎么找? 1662548
邀请新用户注册赠送积分活动 795036
科研通“疑难数据库(出版商)”最低求助积分说明 756500