已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Non-contrast CT-based radiomic signature of pericoronary adipose tissue for screening non-calcified plaque

医学 无线电技术 接收机工作特性 放射科 脂肪组织 对比度(视觉) 核医学 内科学 人工智能 计算机科学
作者
Xingyuan Jiang,Zhiqing Shao,Yating Chai,Yingnan Liu,Ye Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (10): 105004-105004 被引量:4
标识
DOI:10.1088/1361-6560/ac69a7
摘要

Objective.To develop two combined clinical-radiomics models of pericoronary adipose tissue (PCAT) for the presence and characterization of non-calcified plaques on non-contrast CT scan.Approach.Altogether, 431 patients undergoing Coronary Computed Tomography Angiography from March 2019 to June 2021 who had complete data were enrolled, including 173 patients with non-calcified plaques of the right coronary artery(RCA) and 258 with no abnormality. PCAT was segmented around the proximal RCA on non-contrast CT scan (calcium score acquisition). Two best models were established by screening features and classifiers respectively using FeAture Explorer software. Model 1 distinguished normal coronary arteries from those with non-calcified plaques, and model 2 distinguished vulnerable plaques in non-calcified plaques. Performance was assessed by the area under the receiver operating characteristic curve (AUC-ROC).Main results.4 and 9 features were selected for the establishment of the radiomics model respectively through Model 1 and 2. In the test group, the AUC values, sensitivity, specificity and accuracy were 0.833%, 78.3%, 80.8%, 76.6% and 0.7467%, 75.0%, 77.8%, 73.5%, respectively. The combined model including radiomics features and independent clinical factors yielded an AUC, sensitivity, specificity and accuracy of 0.896%, 81.4%, 86.5%, 77.9% for model 1 and 0.752%, 75.0%, 77.8%, 73.5% for model 2.Significance.The combined clinical-radiomics models based on non-contrast CT images of PCAT had good diagnostic efficacy for non-calcified and vulnerable plaques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cqsuper完成签到,获得积分10
1秒前
1秒前
iorpi完成签到,获得积分10
3秒前
sutharsons应助kilig采纳,获得50
3秒前
5秒前
5秒前
科研通AI5应助djbj2022采纳,获得10
5秒前
俭朴的采波完成签到 ,获得积分10
5秒前
5秒前
nhbtur发布了新的文献求助30
6秒前
Doran_luffy发布了新的文献求助10
7秒前
歪歪完成签到 ,获得积分10
9秒前
花花完成签到 ,获得积分10
12秒前
bubu发布了新的文献求助10
12秒前
子凡完成签到 ,获得积分10
12秒前
舒心的绮波完成签到,获得积分20
14秒前
16秒前
16秒前
16秒前
17秒前
周一完成签到,获得积分10
18秒前
18秒前
科研通AI5应助盒子he采纳,获得10
19秒前
等待世平完成签到,获得积分10
19秒前
19秒前
桐桐应助Hz采纳,获得10
20秒前
wEric发布了新的文献求助10
21秒前
钱塘郎中完成签到,获得积分0
22秒前
djbj2022发布了新的文献求助10
22秒前
sutharsons应助kilig采纳,获得50
23秒前
孟愿完成签到,获得积分10
26秒前
mark163完成签到,获得积分10
29秒前
29秒前
Hz完成签到,获得积分10
30秒前
科研通AI5应助郑郑采纳,获得10
30秒前
30秒前
wEric完成签到,获得积分20
31秒前
wanci应助科研通管家采纳,获得10
32秒前
执着的草丛完成签到,获得积分10
32秒前
Hz发布了新的文献求助10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516206
求助须知:如何正确求助?哪些是违规求助? 3098515
关于积分的说明 9239788
捐赠科研通 2793547
什么是DOI,文献DOI怎么找? 1533124
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359