Finite-Time Analysis of Decentralized Stochastic Approximation with Applications in Multi-Agent and Multi-Task Learning

强化学习 计算机科学 随机逼近 马尔可夫链 马尔可夫过程 操作员(生物学) 数学优化 迭代函数 随机过程 独立性(概率论) 趋同(经济学) 多智能体系统 人工智能 数学 机器学习 钥匙(锁) 数学分析 生物化学 统计 化学 计算机安全 抑制因子 转录因子 基因 经济 经济增长
作者
Sihan Zeng,Thinh T. Doan,Justin Romberg
标识
DOI:10.1109/cdc45484.2021.9683363
摘要

Stochastic approximation, a data-driven approach for finding the root of an unknown operator, provides a unified framework for solving many problems in stochastic optimization and reinforcement learning. Motivated by a growing interest in multi-agent and multi-task learning, we study a decentralized variant of stochastic approximation over a network of agents, where the goal is to find the root of the aggregate of the local operators at the agents. In this method, each agent implements a local stochastic approximation using noisy samples from its operator while averaging its iterates with the ones received from its neighbors. Our main contribution is to provide a finite-time analysis of the decentralized stochastic approximation method and to characterize the impacts of the underlying communication topology between agents. Our model for the data observed at each agent is that it is sampled from a Markov process; this lack of independence makes the iterates biased and (potentially) unbounded. Under mild assumptions we show that the convergence rate of the proposed method is essentially the same as if the samples were independent, differing only by a log factor that represents the mixing time of the Markov process. Finally, we present applications of the proposed method on a number of interesting learning problems in multi-agent systems, including distributed robust system identification and decentralized Q-learning for solving multitask reinforcement learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自觉沛芹完成签到,获得积分10
刚刚
YukiXu完成签到 ,获得积分10
刚刚
刚刚
桐桐应助SXM采纳,获得10
1秒前
波特卡斯D艾斯完成签到 ,获得积分10
2秒前
852应助排骨炖豆角采纳,获得10
3秒前
3秒前
顾矜应助木子采纳,获得10
3秒前
feng发布了新的文献求助10
3秒前
成就的小熊猫完成签到,获得积分10
4秒前
4秒前
Morgenstern_ZH完成签到,获得积分10
5秒前
hua发布了新的文献求助10
5秒前
_Forelsket_完成签到,获得积分10
5秒前
5秒前
半颗橙子完成签到 ,获得积分10
7秒前
科研通AI5应助zmy采纳,获得10
7秒前
善学以致用应助enoot采纳,获得10
8秒前
JamesPei应助失眠的血茗采纳,获得10
8秒前
青山发布了新的文献求助10
8秒前
亻鱼发布了新的文献求助10
9秒前
脑洞疼应助成就的小熊猫采纳,获得10
9秒前
9秒前
waterclouds完成签到 ,获得积分10
9秒前
圆圈儿完成签到,获得积分10
9秒前
司空剑封完成签到,获得积分10
10秒前
10秒前
海棠yiyi完成签到,获得积分10
10秒前
10秒前
梁小鑫发布了新的文献求助10
10秒前
Jenny应助圈圈采纳,获得10
11秒前
内向青文完成签到,获得积分10
11秒前
lefora完成签到,获得积分10
11秒前
丰知然应助CO2采纳,获得10
12秒前
Zhihu完成签到,获得积分10
12秒前
feng完成签到,获得积分10
13秒前
13秒前
美丽稀完成签到,获得积分10
14秒前
PXY应助屁王采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740