Over the past two decades, lead-free piezoceramics have been developed aiming to replace toxic lead-bearing lead zirconate titanate (PZT). A large number of lead-free piezo systems were explored during this period as evidenced from the huge number of publications. At this juncture, it was felt necessary to publish a review article focusing on material systems and processes delivering high d33 in order to give direction to future research for its further improvement equivalent to or higher than the d33 level delivered by PZT. The important lead-free piezo systems under consideration are: modified barium titanates such as barium calcium titanate zirconate (BCTZ), barium calcium tin titanate (BCSnT), barium calcium hafnium titanate (BCHfT), and potassium sodium niobate (KNN). In this article, an effort has been made to review the high piezoelectric properties achieved on the above lead-free piezo systems explaining the reasons and mechanisms behind high piezo properties and possible future directions of the research for further enhancement of properties.