材料科学
热导率
复合数
热能储存
相变材料
复合材料
过冷
潜热
焓
化学工程
热的
热力学
物理
工程类
作者
Bo Zhou,Liping Zhen,Yongjie Yang,Wenli Ma,Yilin Fu,Xinping Duan,Huazhi Wang
标识
DOI:10.1016/j.est.2022.104101
摘要
Using porous matrix as the supports for phase change materials (PCMs) can effectively eliminate the leakage problem of PCMs during the phase change process. In heat storage utilization, the as-prepared shape-stabilized phase change materials are highly desired to have high latent heat density, rapid heat transfer ability and less supercooling. Although mesoporous silica with large pore volume and specific surface area might be a promising matrix for PCMs, it would be more beneficial if its thermal conductivity and photo-thermal conversion capacity were further improved, especially for the utilization of solar thermal energy. Herein, a composite PCM, namely SA/[email protected], was fabricated successfully using mesoporous silica coated carbon nanotubes ([email protected]) as the shape-stabilized matrix for the PCM stearic acid (SA). The results of characterizations showed that [email protected] had a core-shell structure with mesoporous silica of a thickness of about 30 nm coated on the outer surface of carbon tubes (CNTs) homogeneously. The melting enthalpy of the obtained SA/[email protected] composite was 125.6 J/g. Its thermal conductivity increased 64.7%, and the supercooling degree decreased 3.2 ℃ while compared with those of pure SA. The melting and solidification enthalpies of SA/[email protected] decreased 1.1% and 1.3%, respectively after 200 thermal cycles. Besides, it is also confirmed that SA/[email protected] had good photo-thermal conversion performance. These imply that the synthesized SA/[email protected] composite would be an ideal heat storage material, especially for solar energy utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI